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MOTIVATION FOR MAGNETICALLY ENHANCED ICPs

l In order to maintain process uniformity over large areas (> 300 mm) 
  efficient new plasma sources are being developed.

l Magnetically Enhanced Inductively Coupled Plasma (ME-ICPs) sources
  are being investigated due to their high ionization efficiency and their
  ability to deposit power within the volume of the plasma.

l The location of power deposition can substantially vary depending on
  the mode of operation and reactor conditions.

l The coupling of electromagnetic fields to
   the plasma occurs through two channels.

l Helicon Wave
l Electrostatic Wave (TG)

l Under certain conditions the electrostatic
   wave can be suppressed resulting in the
   helicon component depositing the majority
   of the power within the plasma volume.
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HYBRID PLASMA EQUIPMENT MODEL

l The base two-dimensional HPEM consists of an electromagnetics
  module (EMM), an electron energy transport module (EETM), and a fluid
  kinetics simulation (FKS).

l A full tensor conductivity was added to the EMM to calculate 3-d
  components of the inductively coupled electric field based on 2-d
  applied magnetostatic fields.

l The plasma current in the wave equation is addressed by a cold
  plasma tensor conductivity.

l Particle transport:
Ions: Continuity, Momentum, Energy
Electrons: Drift Diffusion, Energy
EEDF: Monte Carlo

l Potentials: Poisson
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l  A commercial Trikon Technologies, Inc., Pinnacle 8000 plasma tool was
   used to validate the model.
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ANALYSIS OF TRIKON PLASMA TOOL : Eθθ
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(V / cm)15 0.15

Radians6.283 0

l At low fields, the electromagnetic propagation is mainly radial, producing
  standing wave patterns in the radial direction.

l However as the field increases, propagation dominates in the axial
  direction, shifting standing wave patterns in the direction of propagation.

l Ar, 10 mTorr, 1kW, 50 sccm
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l As static magnetic field increases, the ion saturation current peaks further
  downstream. Simulations show a similar trend for the ion saturation profile.

l For simulations at constant power, downstream peak decreases with
  increasing static magnetic fields since plasma peaks at larger radius (i.e.
  larger plasma volume).

l Ar, 10 mTorr, 1kW, 50 sccm

ANALYSIS OF TRIKON PLASMA TOOL: VALIDATION

Experimental Axial Ion Saturation Profile

l Ar, 2.3 mTorr, 1kW
  (Trikon Technologies, Inc.)
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20 cm

l Ar, 10 mTorr, 1kW, 50 sccm

l As the magnetic fields increase, axial propagation dominates depositing
  power in the downstream region.
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ANALYSIS OF TRIKON PLASMA TOOL :
POWER AND ELECTRON DENSITY
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l Ar/Cl2 4:1, 10 mTorr,

  1kW, 50 sccm

l For an Ar/Cl2 mixture, over the same magnetic range as the Ar simulation,

  power deposition cycles back upstream, resembling ICP behavior.

l At high enough magnetic fields, the electric field wavelength is larger than
  the reactor size and is unable to sustain a standing wave pattern.
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ANALYSIS OF TRIKON PLASMA TOOL : Ar/Cl2
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l Ar/Cl2 4:1, 10 mTorr, 50 sccm

l The ability to deposit power downstream is limited by the wavelength of the
  helicon-like wave.

l If the plasma is significantly electronegative, in the low power-high magnetic
  field regime, the power deposition will resemble conventional ICP.

l For a m = 0 mode, in a cylindrical
  geomerty, the wavelength goes as,

ANALYSIS OF TRIKON PLASMA TOOL : Ar/Cl2
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l Helicon waves have the property that their parallel phase velocities can be
  easily matched to the thermal velocities of electrons in the 20 - 200 eV
  range.

l Chen has suggested Landau damping as a collisionless heating
  mechanism. If the wave grows fast enough, it can trap thermal electrons
  and accelerate them to the phase velocity.

COLLISIONLESS HEATING
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l Sharer et al. found that trapped
  particles appear as the wave
  intensity increases, producing f(εε)
  with energies higher than the
  ionization potential of the gas.

l J. E. Scharer and H. Gui, Nonlinear Trapping
  Simulations for Helicon Plasma Sources,
  IEEE ICOPs, Monterey, CA, 1999

No Collisions, No Heating
B = 50 G, Ez = 1 V/cm
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COLLISIONLESS HEATING

ll Ar, 10 mTorr, 1 kW, 50 sccm

l The electron energy distribution (EED) was obtained from the EMCS.
l The tail of the EED is peaked near the coils.
l As the magnetic field is increased there is an increase in the high energy
  tail downstream.
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COLLISIONLESS HEATING

l Ar, 1 kW, 50 sccm, 300 G

l As the pressure is decreased, the collisionless heating mechanisms
   become more dominant.

l There is significant heating in the downstream region.
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COLLISIONLESS HEATING

l Ar, 1 kW, 300 G, 2mTorr

l The tail end of the EEDF increases with increasing distance from the
  coil.

l The axial component of the electromagnetic field is responsible for most
  of the power deposition.
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COLLISIONLESS HEATING : TG MODE

RKINDER_ICOPS2000_14

          University of Illinois
  Optical and Discharge Physics

εε
ρ enq

E
∆

==⋅∇     ( )ωω

σ

i

q

E

n
Damp

e   
  

+








 ⋅
⋅∇−

=∆

• Recently it has been suggested (Chen) that much of the electron
heating comes from the electrostatic component of the helicon
wave (i.e. the Trivelpiece Gould (TG) mode).

• If plasma neutrality is not enforced, the divergence term in the
wave equation must be included. Effects of the electrostatic TG
mode can then be resolved.

! The divergence of the electric field is  where,
    equal to the perturbed electrons.
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TG MODE AND ELECTRON DENSITY

ll Ar, 10 mTorr, 1 kW, 50 sccm

l The gradient of the perturbed electrons, represents a current sink due
   to the TG mode.

l As the magnetic field increases, the TG mode is strongly damped near
  the surface with a less penetration in the plasma volume.
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TG MODE AND POWER DEPOSITION

l Ar, 10 mTorr, 1 kW, 50 sccm

l At low magnetic fields, the TG mode is weakly damped and is strongly
  coupled to the helicon wave, therby penetrating into the plasma volume.

l As the magnetic field increases, the TG mode is strongly damped near
  the surface and power deposition occurs closer to the surface.
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CONCLUSIONS

l Simulations of a m = 0 mode were conducted in a commercial helicon 
   plasma tool. In the absence of the TG mode, with increasing B-field, 
   electric field propagation progressively follows B-field lines and significant 
   power can be deposited downstream. 

l Electron Monte Carlo Simulations have shown an increase in the tail of the 
  EEDs in the downstream region indicating some amount of collisionless 
  heating.

l Volumetric power deposition is ultimately limited by damping of the TG
  mode and the helicon wavelength. Wave propagation can be suppressed in 
  electronegative gas mixtures in the low power - high B-field range, where
  the wavelength exceeds the chamber dimension. 

l Investigations on the dependence of the TG mode must be established to
  understand the coupling of electromagnetic field and power deposition to 
  the plasma.


