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AGENDA

• Plasmas: Tools for eV physics and chemistry

• Plasmas and Polymers: Extremes in Physics and Applications

• Plasmas for functionalization of polymers

• Polymers for selectivity in plasma etching

• Concluding Remarks
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PARTIALLY IONIZED PLASMAS
• Partially ionized plasmas are gases containing neutral atoms and

molecules, electrons, positive ions and negative ions.

• An air plasma: N2, O2, N2
+, O2

+, O-, e  where [e] << Neutrals
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• These systems are the plasmas of every day technology.

• Electrons transfer power from the "wall plug" to internal modes of 
atoms / molecules to "make a product”, very much like combustion. 

• The electrons are “hot” (several eV or 10-30,000 K) while the gas 
and ions are cool, creating“non-equilibrium” plasmas
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COLLISIONAL LOW TEMPERATURE PLASMAS
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• Displays

• Materials 
Processing

COLLISIONAL LOW 
TEMPERATURE PLASMAS

• Lighting

• Thrusters

• Spray Coatings
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PLASMAS FOR MODIFICATION OF SURFACES

• Plasmas are ideal for producing reactive species (radicals, ions) for 
modifying surface properties.

• Two of the most technologically (and commercially) important uses 
of plasmas involve polymers:

• Both applications utilize unique properties of low temperature 
plasmas to selectively produce structures. 

• Functionalization of 
surfaces (high pressure)

• Etching for 
microelectronics 
fabrication (low pressure)
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SURFACE ENERGY AND
FUNCTIONALITY OF POLYMERS

• Most polymers, having low surface energy, are hydrophobic.

• For good adhesion and wettability, the surface energy of the 
polymer should exceed of the overlayer by  ≈2-10 mN m-1.
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PLASMA SURFACE MODIFICATION OF POLYMERS
• To improve wetting and adhesion of 

polymers atmospheric plasmas are 
used to generate gas-phase radicals 
to functionalize their surfaces.

Untreated PP

Plasma Treated PP

• M. Strobel, 3M

• Polypropylene (PP)

He/O2/N2 Plasma

• Massines et al. J. Phys. D 31, 
3411 (1998).
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PLASMA PRODUCED WETTABILITY

• Boyd,  Macromol., 30, 5429 (1997).
• Polypropylene,  Air corona

• Increases in wettability with plasma treatment result from 
formation of surface hydrophilic groups such as C-O-O 
(peroxy), C=O (carbonyl).

Hydrophobic

Hydrophilic

• Polyethylene, Humid-air
• Akishev, Plasmas Polym. 7, 261 (2002).
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POLYMER TREATMENT APPARATUS

RAJESH_AVS_02_04A

HIGH-VOLTAGE
POWER SUPPLY

FEED ROLLGROUNDED
ELECTRODE

COLLECTOR
ROLL

PLASMA

~

SHOE
ELECTRODE

POWERED

TYPICAL PROCESS CONDITIONS:

Gas gap : a few mm
Applied voltage : 10-20 kV at a few 10s kHz
Energy deposition : 0.1 - 1.0 J cm-2
Residence time : a few s
Web speed : 10 - 200 m/min
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COMMERCIAL CORONA PLASMA EQUIPMENT

RAJESH_AVS_02_04

Tantec Inc.
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CORONA/DIELECTRIC BARRIER PLASMAS

• Laboratory Dielectric Barrier 
Discharge

• Corona and dielectric barrier discharge plasmas operate in a 
filamentary mode.

• 1 atm, Dry Air, -15 kV, 30 ns

• Electron Density (2-d Model)
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POLYPROPYLENE

• PP is a hard but flexible plastic. 5 million metric tons of 
PP film are used yearly, much of it functionalized with 
plasmas

Worldwide market of BOPP by end uses

Snacks

Baked goods

Confectionary
Others 

Tobacco

Non-food
packaging

Adhesive Others 
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FUNCTIONALIZATION OF THE PP SURFACE

• Untreated PP is hydrophobic.

• Increases in surface energy by plasma treatment are 
attributed to the functionalization of the surface with 
hydrophilic groups.

• Carbonyl (-C=O) • Alcohols (C-OH)

• Peroxy (-C-O-O) • Acids ((OH)C=O)

• The degree of functionalization depends on process 
parameters such as gas mix, energy deposition and 
relative humidity (RH).

• At sufficiently high energy deposition, erosion of the 
polymer occurs.
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REACTION PATHWAY

RAJESH_AVS_02_05
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DESCRIPTION OF THE MODEL: GLOBAL_KIN

RAJESH_AVS_02_08

• Modules in GLOBAL_KIN:
• Circuit model
• Homogeneous plasma chemistry
• Species transport to PP surface
• Heterogeneous surface chemistry

N(t+∆t),V,I

CIRCUIT
MODULE

GAS-PHASE
KINETICS

SURFACE
KINETICS

VODE -
ODE SOLVER

OFFLINE
BOLTZMANN

SOLVER

LOOKUP TABLE
OF k vs. Te
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SPECIES TRANSPORT TO THE POLYMER SURFACE
• Species in the bulk plasma diffuse to the PP surface 

through a boundary layer (d ~ a few λmfp ≈ µm).

• Radicals react on the PP based on a variable density, 
multiple layer surface site balance model.

POLYPROPYLENE

BOUNDARY
LAYER ~ λmfp

BULK PLASMA

DIFFUSION REGIME

O OH CO2

δ
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REACTION MECHANISM FOR HUMID-AIR PLASMA

• Initiating radicals are O, N, 
OH, H 

• Gas phase products include 
O3, N2O, N2O5, HNO2, HNO3.
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POLYPROPYLENE (PP) POLYMER STRUCTURE

• Three types of carbon atoms in a PP chain:

• Primary – bonded to 1 C atom
• Secondary – bonded to 2 C atoms
• Tertiary  – bonded to 3 C atoms

• The reactivity of an H-atom depends on the type of C bonding.  
Reactivity scales as:

HTERTIARY > HSECONDARY > HPRIMARY

C C C C C C
H H H H H H

H H HCH3 CH3CH3
1

2 3
1 - Primary C
2 - Secondary C
3 - Tertiary C
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PP SURFACE REACTION MECHANISM: INITIATION

• The surface reaction mechanism has initiation, 
propagation and termination reactions.

• INITIATION: O and OH abstract H from PP to produce alkyl 
radicals; and gas phase OH and H2O.

~CH2 C CH2~

CH3

~CH2 C CH2~

CH3

H O(g)

OH(g), H2O(g)

(ALKYL RADICAL)(POLYPROPYLENE)

OH(g)
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PP SURFACE REACTION MECHANISM: PROPAGATION

• PROPAGATION: Abundant O2 reacts 
with alkyl groups to produce “stable” 
peroxy radicals. O3 and O react to 
form unstable alkoxy radicals. 
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PP SURFACE REACTIONS: PROPAGATION / AGING

• PROPAGATION / AGING: Peroxy 
radicals abstract H from the PP chain, 
resulting in  hydroperoxide, processes 
which take seconds to 10s minutes. 
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PP SURFACE REACTION MECHANISM: TERMINATION

• TERMINATION: Alkoxy radicals react with the PP 
backbone to produce alcohols and carbonyls.  Further 
reactions with O eventually erodes the film.

CH2~
O

~CH2 C
CH3

+
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BASE CASE: ne, Te

• Ionization is dominantly of N2 and O2,

• e + N2 → N2
+ + e + e, 

• e + O2 → O2
+ + e + e.

• After a few ns current pulse, electrons 
decay by attachment (primarily to O2).

• Dynamics of charging of the dielectrics 
produce later pulses with effectively 
larger voltage.s

• N2/O2/H2O = 79/20/1, 300 K
• 15 kV,  9.6 kHz, 0.8 J-cm-2

• Web speed = 250 cm/s (460 pulses)
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GAS-PHASE RADICALS: O, OH
• Electron impact dissociation of O2 and H2O produces O and 

OH.  O is consumed in the primarily to form O3,

• After 100s of pulses, radicals attain a periodic steady state.
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PP SURFACE GROUPS vs ENERGY DEPOSITION

• Surface concentrations of alcohols, peroxy radicals are 
near steady state with a few J-cm-2.

•Alcohol densities decrease at higher J-cm-2 energy due to 
decomposition by O and OH to regenerate alkoxy radicals.

• Air, 300 K, 1 atm, 30% RH

• Ref: L-A. Ohare et al., 
Surf. Interface Anal. 33, 335 (2002). 
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GAS-PHASE PRODUCTS: O3, NXOY, HNOX

• O3 is produced by the 
reaction of O with O2,

O + O2 + M → O3 + M.

• N containing products 
include NO, NO2, HNO2
andN2O5,

N2 + O → NO + N,
NO + O + M → NO2 + M,

NO + OH + M → HNO2 + M
NO2 + NO3 + M → N2O5 + M
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• Increasing RH produces more OH.  Reactions with PP generate  more 
alkyl radicals, rapidly converted to peroxy radicals by O2.

PP-H + OH(g) → PP• + H2O(g) PP• + O2(g) → PP-O2•

• Alcohol and carbonyl densities decrease due to  increased 
consumption by OH to form alkoxy radicals and acids.

University of Illinois
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HUMIDITY: PP FUNCTIONALIZATION BY OH

PP-OH+ OH(g)→PP-O• + H2O(g) ,       PP=O• + OH(g) → (OH)PP=O
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EFFECT OF RH: GAS-PHASE PRODUCTS

•Higher RH results in decreasing O and increasing OH. 
• Production of O3 decreases while larger densities of HNOx are 

generated.

N + OH → NO + H, NO + OH → HNO2,     NO2 + OH → HNO3.
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EFFECT OF TGas: PP FUNCTIONALIZATION

• Increasing Tgas decreases O3
leading to lower alkoxy
production.

• PP• + O3(g) → PP-O• + O2(g).

• … and lower production of 
alcohols, carbonyl, and acids.

PP-O• + PP-H → PP-OH + PP•
PP-O• → PP=O
PP=O → PP=O•

PP=O• + OH → (OH)PP=O•

• Lower consumption of alkyl radicals by O3 enables reactions 
with O2 to dominate, increasing densities of peroxy. 
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RH: PREDICTED CONTACT ANGLE
•Relation for wettability / contact angle vs concentration of 

functional groups is non-linear and poorly known.
• Assume wettability is mainly due to O on PP.
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WHAT’S THE UPSIDE: BETTER FRITO BAGS OR 
ENGINEERED BIOCOMPATIBLE COATINGS?

• The ability to control functional groups on polymers through 
fundamental understanding of plasma-solid interactions 
opens the realm of engineered large area specialty surfaces. 

•Keratinocyte cells adhere 
to hydrocarbon polymers 
containing carboxylic acid 
groups (PCP, SAM). 

• Haddow et al.,  J. Biomed. Mat. 
Res. 47, 379 (1999)

UTA_1102_28            



• The striking improvement in the functionality of 
microelectronics devices results from shrinking of individual 
components and increasing complexity of the circuitry

• Plasmas are absolutely essential to the fabrication of 
microelectronics. 

University of Illinois
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PLASMAS AND  MICROELECTRONICS FABRICATION

Ref: IBM Microelectronics
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PLASMAS IN MICROELECTRONICS FABRICATION

• Plasmas play a dual role in microelectronics fabrication.

• First, electron impact on otherwise unreactive gases produces 
neutral radicals and ions.

• These species then drift or diffuse to surfaces where they add, 
remove or modify materials.
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PLASMAS IN MICROELECTRONICS FABRICATION

• Second, ions deliver directed activation energy to surfaces 
fabricating fine having extreme and reproducable tolerances.

• 0.25 µm Feature
(C. Cui, AMAT)
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APPLIED MATERIALS DECOUPLED PLASMA SOURCES (DPS)

PLSC_0901_06
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rf BIASED INDUCTIVELY
COUPLED PLASMAS

• Inductively Coupled Plasmas (ICPs) 
with rf biasing are used here.

• < 10s mTorr, 10s MHz, 100s W – kW, 
electron densities of 1011-1012 cm-3.
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SELECTIVITY IN MICROELECTRONICS FABRICATION:
PLASMAS AND POLYMERS

• Fabricating complex microelectronic structures made of 
different materials requires extreme selectivity in, for example, 
etching Si with respect to SiO2.

• Monolayer selectivity is 
required in advanced 
etching processes.

• These goals are met by 
the unique plasma-
polymer interactions 
enabled in fluorocarbon 
chemistries.

• Ref: G. Timp
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FLUORCARBON PLASMA ETCHING: SELECTIVITY

• Selectivity in fluorocarbon etching relies on polymer deposition.

• Electron impact dissociation of feedstock fluorocarbons produce 
polymerizing radicals and ions, resulting in polymer deposition.

ADVMET_1002_04             

• Compound dielectrics contain oxidants which consume the 
polymer, producing thinner polymer layers.

• Thicker polymer on non-dielectrics restrict delivery of ion energy 
(lower etching rates).

SiFn

SiSiO2

COFn, SiFn

CFx
CFx

CFn, M+
CFn, M+

e + Ar/C4F8            CFn, M+

Polymer
Polymer
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FLUORCARBON PLASMA ETCHING: SELECTIVITY

• Low bias: Deposition
• High bias: etching

ADVMET_1002_05             

• G. Oerhlein, et al., JVSTA 17, 26 (1999)

• Etch Rate (SiO2 > Si)

• Polymer Thickness 
(SiO2 < Si) 
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FLUORCARBON PLASMA ETCHING: POLYMER

• The polymer composition deposited in fluorocarbon plasmas 
depends on feedstock, pressure, power, bias power.

• For discussion PTFE (poly)tetrafluoroethylene [C2F4]n is a good 
approximation for most layers. 

• Rueger et al., JVST A 
15, 1881 (1997)

UTA_1102_33            



University of Illinois
Optical and Discharge Physics

SURFACE KINETICS: FLUOROCARBON PLASMA ETCHING Si/SiO2

• CxFy passivation regulates delivery of precursors and activation energy.

• Chemisorption of CFx produces a complex at the oxide-polymer interface. 

• 2-step ion activated (through polymer layer) etching of the complex 
consumes the polymer. Activation scales inversely with polymer thickness.

• Etch precursors and products diffuse through the polymer layer.

• In Si etching, CFx
is not consumed, 
resulting in 
thicker polymer 
layers.

CF4

F

Plasma

CFn

I+

SiFn,
CxFy

CO2

CFx
I+, F

CO2

I+, F
SiFn

CFn

SiO2 SiO2 SiFxCO2 SiFxSiO2

CFn

Passivation
CxFy

Layer
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MODELING OF FLUOROCARBON PLASMA ETCHING

• Our research group has developed an integrated reactor and 
feature scale modeling hierarchy to model plasma processing 
systems.

ADVMET_1002_09             

• HPEM (Hybrid Plasma 
Equipment Model)

• Reactor scale
• 2- and 3-dimensional
• ICP, CCP, MERIE, ECR
• Surface chemistry
• First principles

• MCFPM (Monte Carlo 
Feature Profile Model)

• Feature scale
• 2- and 3-dimensional
• Fluxes from HPEM
• First principles
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HYBRID PLASMA EQUIPMENT MODEL
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ELECTROMAGNETICS MODULE

AVS01_03              

• The wave equation is solved in the frequency domain using sparse
matrix techniques (2D,3D):

• Conductivities are tensor quantities (2D,3D):
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ELECTRON ENERGY TRANSPORT

where S(Te) = Power deposition from electric fields
L(Te) = Electron power loss due to collisions
Φ = Electron flux
κ(Te) = Electron thermal conductivity tensor
SEB = Power source source from beam electrons

• Power deposition has contributions from wave and electrostatic heating.

• Kinetic (2D,3D):  A Monte Carlo Simulation is used to derive 
including electron-electron collisions using electromagnetic fields from 
the EMM and electrostatic fields from the FKM.
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PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species 
(with jump conditions at boundaries) (2D,3D).
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• Implicit solution of Poisson’s equation (2D,3D):
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MONTE CARLO FEATURE PROFILE MODEL (MCFPM)

• The MCFPM predicts time and spatially dependent 
profiles using energy and angularly resolved 
neutral and ion fluxes obtained from equipment 
scale models.

• Arbitrary chemical reaction mechanisms may be 
implemented, including thermal and ion assisted, 
sputtering, deposition and surface diffusion.

• Energy and angular dependent processes are 
implemented using parametric forms.

SCAVS_1001_08              

• Mesh centered identify of materials 
allows “burial”, overlayers and 
transmission of energy through 
materials.
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TYPICAL ICP CONDITIONS: [e] FOR C4F8, 10 mTORR

• An ICP reactor patterned 
after Oeherlein, et al. was 
used for validation.

• Reactor uses 3-turn coil 
(13.56 MHz) with rf biased 
substrate (3 MHz)

• Electron densities are 
1011-1012 cm-3 for 1.4 kW.

ADVMET_1002_11

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
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POWER, C4F8 DENSITY

• Large power deposition typically results in near total 
dissociation of feedstock gases.

ADVMET_1002_12

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
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MAJOR POSITIVE IONS

ADVMET_1002_13

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz

• CF3
+, CF2

+, and CF+ are 
dominant ions due to 
dissociation of C4F8. 

CF3
+
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CF3
+ TEMPERATURE

• The ion temperature is 
peaked near the walls where 
ions gain energy during 
acceleration in the presheath.

ADVMET_1002_14

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
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IP VERSUS ICP POWER for C4F8

• Extensive validation of the 
plasma models are 
performed with available 
data for densities, 
temperatures and fluxes.

• Ion saturation current 
derived from the model are 
compared to experiments: 
Ion densities are larger 
with moderate static 
magnetic fields. 

ADVMET_1002_27

• Experiments: G. Oehrlein, Private Comm.

• C4F8, 10 mTorr, 13.56 MHz, 100 V probe bias 
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ION/NEUTRAL ENERGY/ANGULAR DISTRIBUTIONS

• The end products of 
reactor scale modeling 
are energy and ion 
angular distributions to 
the surface.

• In complex gas mixtures 
the IEADs can 
significantly vary from 
species to species.

ADVMET_1002_28

• Ar/C4F8, 40 mTorr, 10b MHz, MERIE 
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ETCH RATES AND POLYMER THICKNESS

• Etch rates for Si and SiO2 increase with increasing bias due, in 
part, to a decrease in polymer thickness.

• The polymer is thinner with SiO2 due to its consumption during 
etching, allowing for more efficient energy transfer through the
layer and more rapid etching. 
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POLYMERIZATION AIDS SELECTIVITY
• Less consumption of polymer on Si relative to SiO2 slows and, 

in some cases, terminates etching, providing high selectivity.
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TAPERED AND BOWED PROFILES

• In high aspect ratio (HAR) etching of SiO2
the sidewall of trenches are passivated by 
neutrals (CFx, x ≤ 2) due to the broad 
angular distributions of neutral fluxes.

• Either tapered or bowed profiles can result 
from a non-optimum combination of 
processing parameters including:

ADVMET_1002_17          
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• Degree of passivation
• Ion energy distribution
• Radical/ion flux composition.
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PROFILE TOPOLOGY: NEUTRAL TO ION FLUX RATIO

• The etch profile is sensitive to the ratio of polymer forming fluxes 
to energy activating fluxes.  Small ratios result in bowing, large 
ratios tapering.
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PROFILE TOPOLOGY: ENGINEERING SOLUTIONS

• Knowledge of the fundamental scaling parameter for controlling sidewall 
slop enables engineering solutions and real-time-control options.

• Example: Ar/C2F6 ratio controls polymerizing/ion flux ratio, and hence 
profile topology.  
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LOW-K DIELECTRICS

• As feature sizes decrease and device count increases, the 
diameter of interconnect wires shrinks and path length increases.

• L. Peters, Semi. Intl., 9/1/1998

• Large RC-delay limits 
processor performance.

• To reduce RC-delay, low 
dielectric constant (low-k) 
materials are being 
investigated. 

UTA_1102_35            
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POROUS SILICON DIOXIDE

• Porous SiO2 (xerogels) have low-k properties due to their lower 
mass density resulting from (vacuum) pores.

• Typical porosities:   30-70%
• Typical pore sizes:   2-20 nm

• Porous SiO2 (P-SiO2) is, from a process development viewpoint, 
an ideal low-k dielectric.

• Extensive knowledge base for fluorocarbon etching of
conventional non-porous  (NP-SiO2).

• No new materials (though most  P-SiO2 contains some 
residual organics)

• Few new integration requirements

ADVMET_1002_07             
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ETCHING OF P-SiO2: GENERAL TRENDS
• Etching of Porous SiO2 typically proceeds at a higher rate than NP-SiO2

for the same conditions due to the lower mass density.

ADVMET_1002_08             

• When correcting for mass, etch rates are either larger or smaller than 
NP- SiO2, depending on porosity, pore size, polymerization.

• Standaert et al, JVSTA 18, 2742 (2000).
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WHAT CHANGES WITH POROUS SiO2?

• The “opening” of pores during etching of P-SiO2 results in the 
filling of the voids with polymer, creating thicker layers.

• Ions which would have otherwise hit at grazing or normal angle 
now intersect with more optimum angle.

ADVMET_1002_18          

• An important parameter is 
L/a (polymer thickness / pore 
radius).

• Adapted: Standaert, JVSTA 18, 2742 (2000)
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ETCH PROFILES IN SOLID AND POROUS SiO2

• Solid • Porosity = 45 %
Pore radius = 10 nm

• Porous SiO2 is being 
investigated for low-
permittivity dielectrics 
for interconnect wiring.

• In polymerizing 
environments with heavy 
sidewall passivation, 
etch profiles differ little 
between solid and 
porous silica.

• The “open” sidewall 
pores quickly fill with 
polymer.

• Position (µm)• Position (µm)
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ETCHING OF POROUS SiO2

• Etch rates of P-SiO2 are generally 
higher than for non-porous (NP).

• Examples:

• 2 nm pore, 30% porosity
• 10 nm pore, 58% porosity

• Higher etch rates are attributed to 
lower mass density of P-SiO2.

• CHF3 10 mTorr, 1400 W

ADVMET_1002_23

Exp:  Oehrlein et al. Vac. Sci.Technol. A 18, 2742 (2000)
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PORE-DEPENDENT ETCHING
• To isolate the effect of pores on etch 

rate, corrected etch rate is defined as

• If etching depended only on mass 
density, corrected etch rates would 
equal that of NP- SiO2.

• 2 nm pores L/a ≥1 : C-ER > ER(SiO2).
Favorable yields due to non-normal 
incidence may increase rate.

• 10 nm pores L/a ≤ 1 : C-ER < ER(SiO2).
Filling of pores with polymer decrease 
rates.
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EFFECT OF POROSITY ON BLANKET ETCH RATES

• 2 nm pores: Etch rate increases with porosity.

• 10 nm pores: Polymer filling of pores reduces etch rate at large
porosities.
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EFFECT OF POROSITY ON HAR TRENCHES

ADVMET_1002_26

• At higher porosities, more opportunity for pore filling produces
thicker average polymer layers and lower etch rates.

• Corrected etch rates fall below SiO2 rates when critically thick 
polymer layers are formed.
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EFFECT OF PORE RADIUS ON HAR TRENCHES

• With increase in pore radius, L/a decreases, enabling pore 
filling and a decrease in etch rates.

• Thick polymer layers eventually leads to etch rates falling 
below NP. There is little variation in the taper.
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OXYGEN ETCHING OF PTFE

• After etching, the polymer must be removed from the feature.

• O2 plasmas are typically used for polymer stripping, usually 
during photoresist mask removal.

• Unlike hydrocarbon polymers which spontanesouly react with O, 
fluorocarbon polymers require ion activation for etching. 

• Removal of polymer from porous materials is difficult due to 
shadowing of ion fluxes caused by the pore morphology.

• Polymer + Energetic Ion → Activated Polymer Site (P*)
• P* + O → Volatile Products 
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EFFECT OF PORE RADIUS ON CLEANING
• Larger pores are more difficult to clean due small view angle of

ion fluxes producing lower fluxes of less energetic ions.
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CONCLUDING REMARKS

• Plasmas and polymers enjoy a unique relationship in the realm 
of gas-surface interactions.

• The ability for plasmas to produce reactive species and 
polymers to “accept” those species at ambient temperatures 
have enabled a wide range of technological applications.

• Inspite of years of use, lack of fundamental understanding of 
many of the basic plasma-surface processes has largely limited 
the technology to empirical development.

• As these processes become better characterized, new 
technologies will come to the forefront; from biocompatible 
surfaces to flexible display panels.
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