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MAGNETICALLY ENHANCED ICPs

• ICPs are the workhorse of the microelectronics industry for 
etching of materials.

• To obtain higher ionization efficiencies magnetically enhanced 
ICP (MEICP) sources have been proposed to replace conventional
ICP sources.

• The mechanisms for these high efficiencies are not well 
understood. 

• This presentation reports on a computational study of MEICPs in 
Ar/C4F8 which are used for selective plasma etching.
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FLUORCARBON PLASMA ETCHING: SELECTIVITY
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COFn, SiFn

CFx
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e + Ar/C4F8            CFn, M+

Polymer
Polymer

• Electron impact dissociation of feedstock fluorocarbons produce 
polymerizing radicals and ions; resulting in polymer deposition.

• Selectivity in fluorocarbon etching relies on this polymer 
deposition. 

• O2 is used to control degree of polymerization.
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HYBRID PLASMA EQUIPMENT MODEL
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ELECTROMAGNETICS MODEL

• The wave equation is solved in the frequency domain using sparse
matrix techniques (2D,3D):

• Conductivities are tensor quantities (2D,3D):
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Ar/C4F8 REACTION MECHANISMS

• The limited electron impact 
cross-section data for the 
fluorocarbon species were 
collected and synthesized.

• Rate coefficients for gas phase 
chemistry were taken from 
independent studies in the 
literature or estimated from 
measurements for related 
species.

• The mechanisms were validated 
by comparing to measured ion 
saturation currents obtained with 
probes and ion spectra 
measurements. 
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ICP CELL FOR VALIDATION AND INVESTIGATION

• An ICP reactor patterned after 
Oeherlein, et al. was used for 
validation.

• Reactor uses a metal ring with 
magnets to confine plasma.
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ELECTRON DENSITY FOR BASE CASE

• Electron density is largest 
in the middle of reactor 
where the electric potential 
is maximum.

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
University of Illinois
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CF2
+ DENSITY FOR BASE CASE

• CF2
+ is one of the dominant 

ions in C4F8 plasmas due to 
large dissociation.

• The major path for the CF2
+ is:

• C4F8 + e → C2F4  + C2F4 + e

• C2F4 + e → CF2    + CF2 + e

• CF2 + e → CF2
+ +  e + e

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
University of Illinois
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ELECTRON TEMPERATURE FOR BASE CASE

• The peak in electron 
temperature occurs in the 
skin layer due to the 
collisionless electron heating 
by the large electric field.

• The electron temperature is 
rather uniform over the radius 
in the bulk plasma where 
electrons experience a large 
number of e-e collisions.

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
University of Illinois
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PROBE MEASUREMENTS OF ION SATURATION CURRENT

• Ion saturation current in the case of low-pressure measurements is

Schott (1968)

where  q    =  charge
ni, vi =  ion density, ion thermal velocity
A                =  probe area
Vp =  probe potential
η =   qVp/kTi
Ti, Te =  ion, electron temperatures
rs, rp =  sheath thickness, probe radius.

• Ip is larger than the Langmuir current by due to the pre-
sheath.

ii
i

e
p qvAn

eT
TI π2

4
1
∆=








































−+
+−

−−
+

+










−+
−+

=∆
2/1

22

22/1

22 )(
)(

1)exp(
1/)( pps

ps

ps

p

ppsp

ps

rrr
rr

erf
rr
r

rrr
erf

r
rr η

ηη

2/1)]/(2[ ie eTTπ

AVS_2002_12              



IP FOR ICPs WITH MAGNETS IN Ar
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• Ion saturation current  
significantly varies with the 
probe collecting voltage.

• A linear dependence of ion 
saturation current  on power 
is observed. (Vp=-100 V)

University of Illinois
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IP VERSUS POWER FOR ICPs IN O2 AND C4F8
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• The ion saturation currents are larger if a static magnetic field is used 
to confine the plasma. 

• Larger effects are seen in electronegative plasmas.

• 10 mTorr, 13.56 MHz, 100 V probe bias. University of Illinois
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ION FLUXES FOR ICPs IN O2

Experiment Model
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• Smaller population of O+ is observed in experiments.
• The model recombination coefficient for O on the walls may be too small.

University of Illinois
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IONS FLUXES FOR ICPs WITHOUT MAGNETS IN C4F8

Experiment Model
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• The model predicts the same set of dominant ions observed in experiments.

• The proportion of heavy ions is underestimated in the model, perhaps a 
consequence of improper initial branching or overestimated dissociation 
rates.

• C4F8, 6 mTorr, 600 W, 13.56 MHz University of Illinois
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ION FLUXES FOR ICPs WITH MAGNETS IN C4F8
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• The ratio of heavy ion flux to light ion flux decreases with the use of the 
permanent magnets.

• Model underestimates [CF+] and overestimates [C2F4
+].

• C4F8, 6 mTorr, 600 W, 13.56 MHz University of Illinois
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EFFECT OF MAGNETS ON ELECTRON DENSITY

• Without magnets electron 
density is largest in the 
middle of reactor where the 
electric potential is maximum.

• The static magnetic fields 
produce confinement in the 
periphery, increasing the 
electron density and flattening 
the plasma potential and [e].

• Ar/C4F8=20/80, 3 mTorr, 13.56 MHz, 400 W. University of Illinois
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EFFECT OF MAGNETS ON [CF+]

• Ar/C4F8=20/80, 3 mTorr, 13.56 MHz, 400 W. 

• Without magnets [CF+] has a 
maximum at the edge of the 
classical skin depth where the 
electron impact ionization is 
the largest.

• The static magnetic fields 
broaden the production of 
[CF+] in the radial direction.

University of Illinois
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EFFECT OF MAGNETS ON ELECTRON TEMPERATURE

• Without magnets the electron 
temperature is highest in the skin 
depth due to the collisionless 
electron heating. 

• In the middle of the reactor the 
electrons are cooler because of 
the Ramsauer minimum in Ar 
elastic cross section and lack of 
efficient e-e heating.

• The static magnetic fields reduce 
the gradients in temperature due 
to the increase in the frequency 
of e-e collisions.

• Ar/C4F8=20/80, 3 mTorr, 13.56 MHz, 400 W. University of Illinois
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EEDs FOR ICP IN Ar/C4F8

r=4 cm

Coils

• Although the partial ionization is 
large, the electron energy 
distribution (EED) is non-
Maxwellian as a result of the 
power being deposited in a non-
uniform and non-linear fashion.

• The EEDs have long energy tails 
in the radial center of the skin 
layer due to collisionless 
heating.

• Low energy electrons “pool” at 
the peak in plasma potential in 
the center of the reactor.

• Ar/C4F8=20/80, 3 mTorr, 13.56 MHz, 400 W. University of Illinois
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EFFECT OF MAGNETS ON POSITIVE POWER DEPOSITION

• Without magnets the power is 
mainly deposited within the 
classical skin layer.

• The static magnetic fields 
increase the skin depth and the 
efficiency to deposit power 
within the plasma volume of 
interest.

• Ar/C4F8=20/80, 3 mTorr, 13.56 MHz, 400 W. University of Illinois
Optical and Discharge PhysicsAVS_2002_22             



EFFECT OF MAGNETS ON NEGATIVE POWER DEPOSITION

• Negative power deposition 
results from noncollisional
transport of electrons. 

• Without magnets the major 
region of negative power 
deposition is close to the 
confinement ring due to the 
large electron flux directed 
toward the ring surface.

• The static magnetic fields  
decrease negative power 
deposition.

• Ar/C4F8=20/80, 3 mTorr, 13.56 MHz, 400 W. University of Illinois
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SUMMARY

• A new reaction mechanism for Ar/C4F8 was developed and 
validated against measured ion saturation currents obtained with
probes and ion spectra measurements. 

• The model predicts the same set of dominant ions observed in 
experiments.

• Static magnetic fields effectively confine the plasma and 
significantly increase the density of electrons and ions in the 
discharge.

• These fields also increase the skin depth and the efficiency to 
deposit power within the plasma volume of interest.

• In the skin layer the EED is far from Maxwellian distribution and it 
has the longest energy tail.
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