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MAGNETICALLY ENHANCED ICPs

e ICPs are the workhorse of the microelectronics industry for
etching of materials.

e To obtain higher ionization efficiencies magnetically enhanced
ICP (MEICP) sources have been proposed to replace conventional
ICP sources.

e The mechanisms for these high efficiencies are not well
understood.

e This presentation reports on a computational study of MEICPs in
Ar/C,F; which are used for selective plasma etching.
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FLUORCARBON PLASMA ETCHING: SELECTIVITY

e + Ar/C4Fg —» CFp, M
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e Electron impact dissociation of feedstock fluorocarbons produce
polymerizing radicals and ions; resulting in polymer deposition.

e Selectivity in fluorocarbon etching relies on this polymer
deposition.

e O, is used to control degree of polymerization.
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HYBRID PLASMA EQUIPMENT MODEL
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ELECTROMAGNETICS MODEL

e The wave equation is solved in the frequency domain using sparse
matrix techniques (2D,3D):
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Ar/C,F; REACTION MECHANISMS

e The limited electron impact . CF
cross-section data for the CFs cE*
fluorocarbon species were ) \eTe/
collected and synthesized. CyFg C4F8—> C,Fi

/et\

e Rate coefficients for gas phase

chemistry were taken from C,Fi «——=— C,F, —> C,F3
independent studies in the & X
literature or estimated from ¢ cEt
measurements for related CF, £ CF}
species. / \
C€S=CF p F _

e The mechanisms were validated / / \;

by comparing to measured ion CF* =

saturation currents obtained with
probes and ion spectra
measurements.
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ICP CELL FOR VALIDATION AND INVESTIGATION

e An ICP reactor patterned after
Oeherlein, et al. was used for
validation.

e Reactor uses a metal ring with
magnets to confine plasma.
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ELECTRON DENSITY FOR BASE CASE

15

e Electron density is largest

in the middle of reactor §1°
where the electric potential E
is maximum. L
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e C,F5, 10 mTorr, 1.4 kW, 13.56 MHz
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CF,* DENSITY FOR BASE CASE

e CF," is one of the dominant
ions in C,F; plasmas due to
large dissociation.
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e The major path for the CF,* is:
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e C,F5, 10 mTorr, 1.4 kW, 13.56 MHz
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ELECTRON TEMPERATURE FOR BASE CASE

e The peak in electron 15
temperature occurs in the
skin layer due to the
collisionless electron heating &g
by the large electric field. -

e The electron temperature is
rather uniform over the radius

in the bulk plasma where
electrons experience a large
0 e—— N T

number of e-e collisions.
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e C,F5, 10 mTorr, 1.4 kW, 13.56 MHz
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PROBE MEASUREMENTS OF ION SATURATION CURRENT

* lon saturation current in the case of low-pressure measurements is

1 =Ya e gngv,  Schott (1968)
4 el

1/2 2 1/2
o+ — —n(r. +
A=l erf( 7 J T exp(—7) l—ez_ff( 0 +1;) J
B p

r, (rs+rp)2/rp2 v+ rs+rp)2—rp2

where q = charge

n, v, = ion density, ion thermal velocity

A = probe area

Vp = probe potential

n = qulkTi

T, T, = ion, electron temperatures

res Iy = sheath thickness, probe radius.

* 1 is larger than the Langmuir current by [277, /(eT;)]'* due to the pre-
sheath.
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I, FOR ICPs WITH MAGNETS IN Ar
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e lon saturation current e A linear dependence of ion
significantly varies with the saturation current on power
probe collecting voltage. is observed. (V =-100 V)
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I, VERSUS POWER FOR ICPs IN O, AND C,F,
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e The ion saturation currents are larger if a static magnetic field is used
to confine the plasma.

e Larger effects are seen in electronegative plasmas.

e 10 mTorr, 13.56 MHz, 100 V probe bias. University of lllinois
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ION FLUXES FOR ICPs IN O,

Experiment Model
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e Smaller population of O* is observed in experiments.

e The model recombination coefficient for O on the walls may be too small.
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IONS FLUXES FOR ICPs WITHOUT MAGNETS IN C,F;

Experiment Model
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e The model predicts the same set of dominant ions observed in experiments.

e The proportion of heavy ions is underestimated in the model, perhaps a
consequence of improper initial branching or overestimated dissociation
rates.

e C,Fs, 6 mTorr, 600 W, 13.56 MHz University of lllinois
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ION FLUXES FOR ICPs WITH MAGNETS IN C,F;
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e The ratio of heavy ion flux to light ion flux decreases with the use of the
permanent magnets.

e Model underestimates [CF*] and overestimates [C,F,*].

e C,Fs, 6 mTorr, 600 W, 13.56 MHz University of lllinois
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EFFECT OF MAGNETS ON ELECTRON DENSITY

15 Without magnets
[] 1 [

o Without magnets electron
density is largest in the
middle of reactor where the
electric potential is maximum.
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produce confinement in the
periphery, increasing the
electron density and flattening
the plasma potential and [e].

With magnets
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® ArIC4F8=20/80, 3 mTorr, 13.56 MHZ, 400 W. University of lllinois
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EFFECT OF MAGNETS ON [CF*]

e Without magnets [CF*] has a
maximum at the edge of the
classical skin depth where the
electron impact ionization is
the largest.

e The static magnetic fields
broaden the production of
[CF*] in the radial direction.
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e Ar/C,F;=20/80, 3 mTorr, 13.56 MHz, 400 W. University of lllinois
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EFFECT OF MAGNETS ON ELECTRON TEMPERATURE

e Without magnets the electron
temperature is highest in the skin
depth due to the collisionless
electron heating.

¢ In the middle of the reactor the
electrons are cooler because of
the Ramsauer minimum in Ar
elastic cross section and lack of
efficient e-e heating.

1

e The static magnetic fields reduce
the gradients in temperature due
to the increase in the frequency
of e-e collisions.
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® ArIC4F8=20/80, 3 mTorr, 13.56 MHZ, 400 W. University of lllinois
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EEDs FORICP IN Ar/C,F,

e Although the partial ionization is

large, the electron energy
distribution (EED) is non-
Maxwellian as a result of the
power being deposited in a non-
uniform and non-linear fashion.

e The EEDs have long energy tails
in the radial center of the skin
layer due to collisionless
heating.

e Low energy electrons “pool” at
the peak in plasma potential in
the center of the reactor.

e Ar/C,F;=20/80, 3 mTorr, 13.56 MHz, 400 W.
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EFFECT OF MAGNETS ON POSITIVE POWER DEPOSITION

15 Without magnets
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e Ar/C,F;=20/80, 3 mTorr, 13.56 MHz, 400 W. University of lllinois
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EFFECT OF MAGNETS ON NEGATIVE POWER DEPOSITION

e Negative power deposition
results from noncollisional
transport of electrons.

e Without magnets the major
region of negative power
deposition is close to the
confinement ring due to the
large electron flux directed
toward the ring surface.

e The static magnetic fields
decrease negative power
deposition.

e Ar/C,F;=20/80, 3 mTorr, 13.56 MHz, 400 W.
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SUMMARY

o A new reaction mechanism for Ar/C,F; was developed and
validated against measured ion saturation currents obtained with
probes and ion spectra measurements.

e The model predicts the same set of dominant ions observed in
experiments.

e Static magnetic fields effectively confine the plasma and
significantly increase the density of electrons and ions in the
discharge.

e These fields also increase the skin depth and the efficiency to
deposit power within the plasma volume of interest.

¢ In the skin layer the EED is far from Maxwellian distribution and it
has the longest energy tail.
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