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(DTS)
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INTRODUCTION

• Particles in low temperature, partially ionized plasmas
exhibit collective behavior and form coulomb solids under
certain conditions.

• The regimes of plasma operating conditions in which these
structures are formed are of interest as an indication of
crystal formation mechanisms.

• In this paper we discuss results from a parametric study of
the formation of coulomb crystals in a GEC Reference cell.
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• A modular simulator
addressing low temperature,
low pressure plasmas.

• EMM produces
electromagnetic fields and
magneto-static fields.

• EETM produces electron
temperature, electron impact
sources, and transport
coefficients.

• FKM produces densities,
velocities, and temperature of
plasma species.
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DUST TRANSPORT SIMULATION ( DTS )

• The fluxes and densities from the HPEM are used in the
Dust Transport Simulation (DTS) to compute dust particle
trajectories and locations.

• The DTS is a three-dimensional dust particle transport
model.

• Forces included in the DTS are electrostatic, ion drag ,
thermophoretic, fluid drag by neutrals , brownian motion,
self-diffusion, coulomb repulsion and gravity.
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DUST TRANSPORT SIMULATION ( DTS )

• The net force is:

• A particle’s  potential is calculated by equating the electron
and ion currents to the surface.

coulomb) ( r exp 
11

 
Q

4

Q
   (brownian)   

4

  
  

M
        

     

)( kT -  drag) (fluid   
24
Re

(Re)C  )v( 
)(

r6
 -        

 retic)(thermopho  6 -  drag)-(ion  s ),r( )(  atic)(electrost  EQ    (gravity)  gM )r(F

j

ji
2

gas

iDii

I
ions

iiii








 −−
−−










++++

∆∆

∆∆
++

−−
∇∇

−−

∇∇
ΦΦ++++==

∑∑

∑∑

L

ij

Lijijo

igas

i

i

TiI

aR

RR

dtvN

t

v

diffusionself
N
N

u
KnC

T
T

vKrv

λλλλπεπε

ππ

πµπµ

πµπµεεσσ








 ΦΦ
==








 ΦΦ
−−==

ee

e

II

I

kT
q

m
kT

Nq

E
q

m
E

Nq

exp 
3

a I

,1
2

a I

2
e

2
I

ππ
ππ

ππ



University of Illinois
Optical and Discharge PhysicsDUST_01- 7

DUST TRANSPORT SIMULATION ( DTS )

• The charge on the particle is determined from the
capacitance C of the particle, where C has the form

• The debye length λλLis obtained by linearizing the Poisson-
Vlassov equation:
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DUST TRANSPORT SIMULATION ( DTS )

• The ion-dust momentum transfer cross-section is
calculated according to the semi-analytic formula by
Kilgore et al.

• Coulomb coupling parameter is calculated as follows:
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DUST TRANSPORT SIMULATION ( DTS )

• Phases of the structures
formed are analysed using
the pair correlation
function (PCF) for particles
or g(r).

• Peaks in  the PCF
correspond to to the first,
second, and other nearest
neighbors for particles.

Ar, 95 mTorr, 150 V,

100 particles of radius 3.8 µµm.
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MODIFIED GEC REFERENCE CELL

• A modified GEC Reference
cell was used for the
simulations.

• A focus ring was used to
confine the particles.

• Lower electrode is
powered at 10 MHz, upper
electrode is grounded.

• Dust particles are
generated between the
electrodes.

• Simulation time is 8 s.
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OPERATING CONDITIONS

• Ar at a pressure of 95
mTorr

• Substrate bias: 125 - 250 V

• Radius of dust particles :
0.01-10 µµm.

• Gas flow : 300 sccm.

• TGAS = 350 K.

ELECTRON TEMPERATURE
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PLASMA PROPERTIES

AR+ DENSITYELECTRON DENSITY PLASMA POTENTIAL

Ar, 95 mTorr , substrate bias 150 V
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SUBSTRATE BIAS DETERMINES MORPHOLOGY

• For Ar, 95 mTorr and a particle size of 3.8µµm splitting into 2
lattices is observed at higher substrate biases

VIEW

A single lattice observed at lower substrate bias
Splitting into 2 lattices observed with increase             

        of substrate bias to 250 V

SINGLE LATTICE

FOCUS RING

INNER
LATTICE

OUTER LATTICE
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EFFECT OF SUBSTRATE BIAS ON THE COULOMB
CRYSTAL

• For typical conditions
(Ar, 95mTorr), the
substrate bias was varied
from 125 V to 250 V.

• At higher voltages
particles are observed to
split into 2 sub-lattices.

• Larger radial forces at
higher voltages push
particles into an outer
lattice.
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EFFECT OF PARTICLE RADIUS ON THE COULOMB
CRYSTAL

• Particle radius was varied from 0.1µµm to 10 µµm keeping the
number of particles in the lattice constant at 150.

• For 0.1 µµm we observe two distinct and well-separated
lattices. The upper lattice is disk shaped and well above the
central electrode.

• For 10 µµm particle radius we observe a single lattice near
the bottom electrode.The effect of gravity becomes
important for larger particles.

• For intermediate radii, the upper lattice is found to disperse
and become sparsely populated.
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EFFECT OF PARTICLE RADIUS ON LATTICE
MORPHOLOGY

• Splitting of lattice observed at smaller radii for Ar, 95
mTorr and a substrate bias of 150 V.

UPPER LATTICE

LOWER LATTICE

0.1 µµm PARTICLES ARRANGING IN 2 LATTICES

SINGLE LATTICE

10 µµm PARTICLES ARRANGING IN A SINGLE LATTICE
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EFFECT OF PARTICLE RADIUS ON THE COULOMB
CRYSTAL

Net Force in Z-direction Particle Trapping Locations

Ar, 95 mTorr, substrate bias 150 V

Particle radius 0.1µµm

UPPER LATTICE

LOWER LATTICE
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EFFECT OF PARTICLE RADIUS ON THE COULOMB
CRYSTAL

Net Force in Z-direction 

Particle radius 1µµm

Particle Trapping Locations

Ar, 95 mTorr, substrate bias 150 V

SINGLE
LATTICE
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EFFECT OF PLASMA DENSITY ON INTERPARTICLE
SPACING

• The  ion and electron
densities were varied while
keeping other conditions
constant.

• At low plasma densities we
observe a slight increase in
interparticle spacing because
of an increase in the particle
temperature.

• A monotonic decrease is
observed at higher plasma
densities because of reduced
shielding length.
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EFFECT OF NUMBER OF PARTICLES ON
INTERPARTICLE SPACING

• The effect of the number of
particles on interparticle
spacing was studied for
different voltages.

• Interparticle spacing is found
to be in good agreement with
experimentally observed
trends.

• Interparticle spacing is found
to decrease with increase in
number of particles.

INCREASE IN NUMBER OF PARTICLES DECREASES
                        INTERPARTICLE SPACING

POTENTIAL WELL



University of Illinois
Optical and Discharge PhysicsDUST_01- 21

EFFECT OF NUMBER OF PARTICLES ON
INTERPARTICLE SPACING

0.11 cm 0.075cm 0.065cm

Interparticle spacing for 3.8 µµm particles (Ar, 95 mTorr, substrate bias 150 V).  

7 particles 100 particles 200 particles
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EFFECT OF NUMBER OF PARTICLES ON
INTERPARTICLE SPACING

• Maximum spacing is observed for 225 V. However no clear
correlation of spacing with voltage is observed.

Interparticle spacing for 3.8µµm particles as a function of number of
particles  for Ar, 95 mTorr
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EFFECT OF NUMBER OF PARTICLES ON THE
COULOMB COUPLING FACTOR

• Coulomb Coupling factor increases with increase in
number of particles.
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Coulomb coupling factor as a function of the number of 
particles for Ar, 95 mTorr and a substrate bias of 150V.
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EFFECT OF PRESSURE ON THE COULOMB
CRYSTAL

• Pressure was varied from 95
mTorr to 1 Torr .

• For Ar, 150 V and 3.8µm
particles,

• Increase in pressure
decreases coulomb
coupling factor because
higher ion fluxes lead to
higher particle  velocities
and temperatures.

• Increase in pressure
decreases interparticle
spacing.
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CONCLUSIONS

• Abrupt splitting into 2 lattices observed for higher voltage.

• Particles of smaller size prefer forming 2 sublattices.

• Interparticle spacing decreases and coulomb coupling
factor increases with increase in the number of particles in
the lattice.

• Interparticle spacing decreases monotonically for higher
electron and flux densities.

• Increase in pressure decreases the coulomb coupling
factor and interparticle spacing.


