SCALING OF PFC ABATEMENT USING PLASMA BURN BOXES*

Xudong "Peter" Xu and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801

November 1998

*Work supported by National Science Foundation and Semiconductor Research Corp.

- Introduction
- Geometries of Etching Reactor and Burn Box
- Plasma Chemistry for Ar/PFCs/O 2
- Consumption and Generation of PFCs in Etching Reactor
- Comparison of Predicted C 2F6 Abatement with Experiments
- Plasma Remediation of PFCs in Burn Box
- Concluding Remarks

- Perfluorocompounds (PFCs) are widely used as process gases in microelectronics fabrication for etching and chamber cleaning.
- PFCs are absorbers of infrared radiation having long atmospheric lifetimes and thus have high global warming potential.

^{*} J. V. Gompel and T. Walling, Semiconductor International, Semp., 1997, p95

INVESTIGATION OF PLASMA GENERATION AND REMEDIATION OF PFCS

- Since finding suitable substitutes for PFCs is unlikely, remediation of the effluent of plasma etching reactors must be done.
- Destruction of C ₂F₆ by plasmas has been experimentally demonstrated in low pressure devices.
- Computer modeling is a useful tool for investigate the physical processes occurring in plasma remediation of PFCs.
- 2-d HPEM simulations have been performed to investigate
 - Consumption and generation of PFCs in ICP etching reactors
 - Abatement of PFCs in a plasma burn box

GEOMETRIES OF ETCHING REACTOR AND PLASMA BURN BOX

- The test system consists of a plasma etching chamber and a downstream plasma burn box.
- The plasma etching chamber is a 13.56 MHz ICP reactor using Ar/C 2F6 at 10 mTorr. A 20 cm diameter wafer sits on the substrate
- The burn box, which is down stream of the turbopump, is also an ICP reactor with O 2 injection at the higher pressure of 150 mTorr.

OXIDATION CHEMISTRY IN BURN BOX

$O + CF_3 COF_2 + F$	$O + CF_2 COF + F$
$O + CF_2 CO + F + F$	O + CF CO + F
$O + COF CO_2 + F$	
$O(^{1}D) + CF_{3} COF_{2} + F$	$O(^{1}D) + CF_{2} COF + F$
$O(^{1}D) + CF_{2}$ CO + F + F	O(¹ D) + CF CO + F
O(¹ D) + COF CO ₂ + F	
O ⁺ + CF ₄ CF ₃ ⁺ + FO	O ⁺ + C ₂ F ₆ CF ₃ ⁺ + CF ₃ + O
$O^{+} + C_{2}F_{6} C_{2}F_{5}^{+} + FO$	
$COF + CF_2 CF_3 + CO$	$COF + CF_2 COF_2 + CF$
$COF + CF_3 CF_4 + CO$	$COF + CF_3 COF_2 + CF_2$
$COF + COF COF_2 + CO$	

EXPERIMENTAL ABATEMENT OF **6**F₆ IN BURN BOX

• Sawin and Vitale ^{*} investigated the abatement of C ₂F₆ in an ICP burn box using an internal coil.

SIMULATION RESULTS FOR EXPERIMENTAL CONDITION:

• The decomposition of C 2F6 is mainly caused by electron impact.

C ₂ F ₆ +e	CF3++CF3+e+e	
C ₂ F ₆ +e	CF3 + CF3 + e	
C ₂ F ₆ +e	CF3 ⁻ + CF 3	0.16
C ₂ F ₆ +e	CF5 + F ⁻	0.84

- The generation of CF 4 is via radical recombination. CF 3 + F CF4
- The formation of CF 4 depends on the gas temperature [k=1.78•10 -8 (T/298) -7.73 •exp(-4271/T) cm 3 •s -1] and the availability of F atoms to recombine with CF 3.
- The branching ratio for C 2F6 + e negative ions significantly changes the formation of CF 4.

avs98-08

SIMULATION RESULTS FOR ABATEMENT EXPERIMENT

- Plasma is generated only near the coils for 500 mTorr pressure due to the finite skin depth.
- Lower level of C 2F6 decomposition is due, in part, to pass through of gases in center.

PLASMA PARAMETER IN ETCHING REACTOR

• A "standard" ICP reactor having a 4-turn coil is used as a baseline.

- Power: 650 W
- Gas flow: 200 sccm

Gas Mixture: Ar/C 2F6=6040
Pressure: 10 mTorr

FEEDSTOCK NEUTRAL DISSOCIATION

•C ₂F₆ can be dissociated mainly to CF ₃, and CF₃ can be continuously dissociated to generate CF ₂. Due to subsequent reassociation, the densities of C ₂F₆ increase near pump port.

$$C_2F_6 + e$$
 $CF_3 + CF_3$ $C_2F_6 + Ar^*$ $CF_3 + CF_3 + CF_3 + Ar$ $CF_3 + e$ $CF_2 + F + e$ $CF_3 + Ar^*$ $CF_2 + F + Ar$ $CF_3 + CF_3 + M$ $C_2F_6 + M$

PFC GENERATION IN ETCHING CHAMBER

• Some PFCs are generated due to radical recombination.

CF3 + F (CF4	CF3 + F 2	CF4 + F
$CF_2 + CF_3$	C ₂ F ₅	$CF_2 + CF_2$	C ₂ F ₄

C₂F₆ CONSUMPTION IN ETCHING REACTOR

- A design of experiment has been performed to determine the functional relationships for C 2F6 consumption.
- The consumption increases nearly linearly with a decrease in C 2F6 percentage and gas flow rate, and with an increase of power deposition.

PLASMA PARAMETERS IN BURN BOX

- A "standard" ICP burn box having a 2-turn coil with radius 4.25 cm and height 26.5 cm is used as a baseline.
- Power (W cm ⁻³) Electric field (V cm ⁻¹) 21.1 9.98 9.98 0.12 0.08

- Power: 650 W
- Effluent: 227.7 sccm
- •O 2 injection: 90 sccm
- Pressure: 150 mTorr

$\mathsf{EFFLUENT}\ \mathsf{G}_{\!m}\mathsf{F}_{\!n}\ \mathsf{REMOVAL}\ \mathsf{IN}\ \mathsf{PLASMA}\ \mathsf{BURN}\ \mathsf{BOX}$

• CF 2, CF3, C2F4 and C2F5 from the etching reactor effluent are almost completely removed in the burn box.

C₂F₆ ABATEMENT AND CF₄ GENERATION

• In the burn box, C 2F6 in the etching reactor effluent is abated by 75%, but a significant amount of CF 4 can be generated (triple CF 4 in the effluent).

C₂F₆ ABATEMENT AND CF₄ GENERATION vs POWER, Q

•C ₂F₆ abatement increases with increasing power and O ₂ fraction.

- More dissociation of C 2F6 CF3, O2 O
- Subsequent reactions of O + CF 3
- •CF 4 generation increases with increasing power and decreasing O 2. CF4 is generated by the reaction of CF 3 + F. In O atom rich environments, CF 3 reacts to produce COF 2.

OXIDATION PRODUCT GENERATION vs POWER, **2**

- CO is preferentially formed at high power and high O 2 since CF2 leads to CO. The sources of CF 2 and O are large at higher discharge power.
- CO 2 and COF2 are preferentially formed at high O 2, however subsequent dissociation of CO 2 and COF2 reduces this sensitivity.

- PFC consumption and generation in an ICP plasma etching reactor, and PFC abatement in an ICP burn box have been discussed.
- •C ₂F₆ consumption for Ar/C ₂F₆ gas mixtures in the etching reactor is proportional to ICP power deposition, and inversely proportional to C ₂F₆ mole fraction and total gas flow rate.
- PFCs from the plasma etching effluent can be abated in the ICP burn box at high power and high O 2. With low O 2, C2F6 can be decomposed, however CF 4 is generated. The major oxidation products are CO 2, CO and COF2.
- Low decomposition of C 2F6 in can result from the finite electromagnetic skin depth resulting in "outside" power deposition and "pass through" of gases in the center.

UNIVERSITY OF ILLINOIS OPTICAL AND DISCHARGE PHYSICS