ABATEMENT IN INDUCTIVELY COUPLED PLASMA REACTORS USING Q, H₂ AND H₂O AS ADDITIVE GASES

Xudong "Peter" Xu and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801

October 1999

*Work supported by Semiconductor Research Corp.

- Introduction
- Geometries of Etching Reactor and Burn Box
- Plasma Chemistry in Burn Box
- Validation
- Plasma Remediation of PFCs in Burn Box
- Concluding Remarks

INTRODUCTION

- Perfluorocompounds (PFCs), important process gases, are absorbers of infrared radiation having long atmospheric lifetimes and thus have high global warming potential.
- Since finding suitable substitutes for PFCs is unlikely, remediation of the effluent of plasma etching reactors must be done. Plasma remediation of gas emissions from plasma reactors is an attractive alternative abatement strategy.
- Efficient destruction of C₂F₆ as found in reactor effluent by plasmas has been experimentally demonstrated in low pressure devices.
- Computer modeling is a useful tool for investigating the physical processes occurring in plasma remediation of PFCs. It supplements the experiments and will be used to optimize the development of plasma unit designs.
- 2-D simulations of low pressure plasma remediation of PFCs have been performed.

PLASMA REMEDIATION FOR PFCS

 The effluent from the etching reactor having Ar/C₂F₆ = 40/60, 200 sccm and 350 W power deposition is used as input for the burn box.

Ar	0.306	C ₂ F ₆	0.289
CF3	0.173	CF ₂	0.057
C ₂ F ₄	0.011	C_2F_5	0.020
SiF ₂	0.038	F	0.038
F_2	0.009		

Total flowrate is 227.7 sccm larger than the input flowrate due to dissociation.

- \bullet Using H2 or H2O as an additive for PFC abatement, H and OH generated by electron impact dissociation become the primary species for abating CF_X radicals.
- H₂ and H₂O can also directly react with F, which thereby acts as a sink to remove free fluorine atoms which might otherwise recombine to form CF₄.

$H + CF_3$	$CF_2 + HF$	$H + CF_2$	CF + HF
H+CF (C + HF	H ₂ + F	H + HF
OH + CF3	COF ₂ + F	OH + CF ₂	COF + HF
OH + CF	CO + HF	OH + CO	CO ₂ + HF
F + H ₂ O	OH + HF		

- \bullet Using H2 or H2O as an additive for PFC abatement, H and OH generated by electron impact dissociation become the primary species for abating CF_X radicals.
- H₂ and H₂O can also directly react with F, which thereby acts as a sink to remove free fluorine atoms which might otherwise recombine to form CF₄.

$H + CF_3$	$CF_2 + HF$	$H + CF_2$	CF + HF
H+CF (C + HF	H ₂ + F	H + HF
OH + CF3	COF ₂ + F	OH + CF ₂	COF + HF
OH + CF	CO + HF	OH + CO	CO ₂ + HF
F + H ₂ O	OH + HF		

VALIDATION

- The model results were compared with the experimental results of Sawin and Vatile.
- The branching ratio for $C_2F_6 + e$ negative ions significantly changes the formation of CF4.

PLASMA PARAMETERS IN BURN BOX

• A "standard" ICP burn box having a 2-turn coil with radius 4.25 cm and height 26.5 cm is used as a baseline.

CxFy ABATEMENT IN PLASMA BURN BOX

• CF₂, CF₃, C₂F₄ and C₂F₅ from the etching reactor effluent are almost completely removed in the burn box.

- Power: 500 W
- O₂ injection: 150 sccm Pressure: 150 mTorr
- Effluent: 227.7 sccm

C₂F₆ ABATEMENT AND CF₄ GENERATION

• C₂F₆ in the etching reactor effluent is abated by 53%, but a significant amount of CF₄ can be generated (increased by a factor of 2.4).

• Power: 500 W

- Effluent: 227.7 sccm
- O₂ injection: 150 sccm
- Pressure: 150 mTorr

OXIDATION PRODUCTS IN PLASMA BURN BOX

• The major oxidation products are CO, CO₂, and COF₂ which can be removed by conventional methods.

SPECIES DENSITY USING H₂ AS AN ADDITIVE

- Compared to the O₂ case, the electron density is increased by a factor of 2.4 due to the lower rate of attachment to H₂.
- C₂F₆, CF₃, and CF₄ are abated in the burn box.

PRODUCTS USING H_2 AS AN ADDITIVE

- HF is the major product (0.49) leaving the burn box with lesser amounts of CF (0.094), C (0.074) and CF₂ (0.041).
- The higher mole fraction of CF and CF₂ compared to O₂ are due to there being insufficient H to reduce them to C.

- Power: 500 W
- H₂ injection: 150 sccm
- Effluent: 227.7 sccm

Pressure: 150 mTorr

SPECIES DENSITY USING H₂O AS AN ADDITIVE

• The electron density is higher than the base case with O₂ as an additive, but lower than for H₂, due largely to the rate of attachment of H₂O being between O_2 and H_2 .

500 W • Power: • H₂O injection: 150 sccm • Pressure: 150 mTorr xxu_avs99_13

• Effluent: 227.7 sccm

PRODUCTS USING H₂O AS AN ADDITIVE

- Using H₂O as an additive, the major products are HF, COF₂, CO and C.
- The F atoms which were initially bound in all C_xF_y were converted to products in the proportions: HF, 59.8, and COF₂, 40%. The carbon atoms initially bound in C_xF_y were converted to products in COF₂, 63.3%; CO, 3.4%; C, 3.9%; and CO₂ 1.4%.

ABATEMENT USING O₂, H₂, OR H₂O AS AN ADDITIVE

 Abatement of each C_xF_y species and total PFC species, primary products, W value of all C_xF_y using 150 sccm O₂, H₂, or H₂O as additives at 500 W

Species	Fractional Abatement for Additives		al - Final Initial
	O ₂ Additive	H ₂ Additive	H ₂ O Additive
C ₂ F ₆	0.53	0.54	0.73
C ₂ F ₅	>0.99	-0.47	0.37
C ₂ F ₄	>0.99	-2.71	-0.31
C ₂ F ₃	>0.99	0.22	0.35
CF4	-1.4	0.23	0.04
CF3	>0.99	0.96	0.98
CF ₂	>0.99	-0.4	0.05
Products	COF ₂ , CO ₂ , CO, F, F ₂	HF, , C, CF	HF, COF ₂ , CO ₂ , CO, C, CF
of C _X Fy	0.54	0.42	0.65
W Value (ev)	124.9	159.8	119.3

FRACTION OF C_XF_y ABATEMENT

• The fraction of C_xF_y abatement increases with increasing power deposition and the amount of addictive gases.

• The W-value increases (lower power efficiency) with increasing power deposition decreasing the amount of addictive gases.

- The model was validated by comparison to experiments using O₂/C₂F₆.
- PFCs from plasma etching effluent can be efficiently destroyed in ICP burn box.
- In general, CF₄ generation occurs during abatement of C₂F₆ using O₂ as an additive. The major oxidation products are COF₂, CO and CO₂.
- H₂ can be used as an alternative to O₂ without producing CF₄ since hydrogen reacts rapidly with free fluorine which otherwise reassociates with CF_xto form CF₄. F and C atoms initially contained in C_xF_y were converted to HF and C.
- H₂O is a promising and efficient abatement additive gas since it has a source of both oxygen and hydrogen. The primary products are HF, CO, COF₂ with a small amount of C and CO₂.