MONTE CARLO METHODS FOR ELECTRON TRANSPORT

Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering 1406 W. Green St. Urbana, IL 61801 USA 217-244-5137 <u>mjk@uiuc.edu</u> <u>http://uigelz.ece.uiuc.edu</u>

May 2002

MONTE CARLO METHODS FOR ELECTRON TRANSPORT

- The Monte Carlo (MC) method was developed during WWII for analysis of neutron moderation and transport.
- MC methods enable direct simulation of complex physical phenomena which may not be amenable to conventional PDE analysis.
- The method relies upon knowledge of probability functions for the phenomena of interest to statistically (randomly) select occurrences of events whose ensemble average is "the answer".
- These methods are extensively used in simulating electron transport do obtain, for example, electron energy distributions.

EXAMPLE: ELECTRON ENERGY DISTRIBUTION IN ICP

• Inductively Coupled Plasma: Ar, 10 mTorr, 6.78 MHz

MCSHORT_02_31

MONTE CARLO METHOD REFERENCES

- J. P. Boeuf and E. Marode, J. Phys. D 15, 2169 (1982)
- G. L. Braglia, Physica 92C, 91 (1977)
- S. R. Hunter, Aust. J. Phys. 30, 83 (1977)
- S. Lin and J. Bardsley, J. Chem. Phys 66, 435 (1977)
- S. Longo, Plasma Source Science Technol. 9, 468 (2000)
- J. Lucas, Int. J. Electronics 32, 393 (1972)
- J. Lucas and H. T. Saelee, J. Phys. D 8, 640 (1975)
- K. Nanbu, Phys. Rev E 55, 4642 (1997)
- M. Yousfi, A. Hennad and A. Alkaa, Phys Rev E 49, 3264 (1994)
- Computational Science and Engineering Project http://csep1.phy.ornl.gov, http://csep1.phy.ornl.gov/CSEP/MC/MC.html

BASICS OF THE MONTE CARLO METHOD: p(x)

 A physical phenomenon has a known probability distribution function p(x) which, for example, gives the probability of an event occurring at position x.

BASICS OF THE MONTE CARLO METHOD: P(x)

• The cumulative probability distribution function P(x) is the likelihood that an event has occurred prior to x.

 Since p(x) is always positive, there is a 1-to-1 mapping of r=[0,1] onto P(x = 0 → x = ∞).

RANDOM USE OF P(x) TO REGENERATE p(x)

• By randomly choosing "product values" of P(x) (distributed [0,1]) and binning the occurrences of the argument x, we reproduce p(x).

• The function which, given a random number r=[0,1], provides a randomly selected value of x is:

$$x = P^{-1}(r)$$

EXAMPLE: RANDOM P(x) TO REGENERATE p(x)

 WARNING!!! In practical problems, p(x) cannot be analytically integrated for P(x) and/or P(x) cannot be analytically inverted for P⁻¹(x). These operations must be done numerically.

EXAMPLE: RANDOM P(x) TO REGENERATE p(x)

 p(x) is reproduced within random statistical error (n^{-1/2}=0.01).

ibins=100 itrials=10000 deltax=2xmax=10.dx=xmax/ibins ynorm=0. do i=1,itrials r = random(iseed)x=-deltax*alog(1.-r) ibin=x/dxynorm=ynorm+dx y(ibin)=y(ibin)+1.end do do i=1,ibins y(i)=y(i)/ynorm end do

University of Illinois Optical and Discharge Physics

MCSHORT_02_07

• An electron with energy ε collides with an atom with differential cross section $\sigma(\varepsilon, \theta, \phi)$

providing the likelihood of scattering into the solid angle centered on (θ, ϕ) .

Note: Typically only the explicit dependence on polar angle θ is considered. Scattering with azimuthal angle ϕ is usually assumed to be uniform.

DIFFERENTIAL SCATTERING

• $\sigma(\varepsilon, \theta)$ for real atoms and molecules can be quite complex (C₂F₆) Christophorou, J. Chem. Phys. Ref. Data 27, 1, (1998) • $\sigma(\varepsilon, \theta)$ for real atoms

Ref. Data 27, 1, (1998)

- Accounting for forward scattering at higher energies (> 10s eV) is very important in simulating electron transport.
- Assuming Isotropic scattering in the polar direction yields:

$$\sigma(\theta) = \sigma_o, \ P(\theta) = \frac{1}{2\sigma_o} \int_0^\theta \sigma_o \sin(\theta') d\theta', \ \theta = \arccos(2r - 1)$$

COLLISION DYNAMICS

• To account for the change in velocity of an electron following a collision:

- 1. Determine Eularian angles (β, α) of $\vec{v}_{initial}$
- 2. Rotate frame by (β, α) so z-, x-axes align with $\vec{v}_{initial}$
- 3. Rotate $\vec{v}_{initial}$ by (θ, ϕ) to yield direction of \vec{v}_{final}
- 4. Account for change in speed $\left| \vec{v}_{final} \right|^2 = \left| \vec{v}_{initial} \right|^2 2\Delta \varepsilon / m_e$
- 5. Rotate frame by $(-\alpha, -\beta)$ to original orientation

COLLISION DYNAMICS

• End result is the "scattering matrix" which transforms initial velocity to final velocity:

 $\vec{v}_{final} = \left| \vec{v}_{final} \right| \cdot \\ \begin{bmatrix} \cos(\beta)\cos(\alpha)\sin(\theta)\cos(\phi) + \cos(\beta)\sin(\alpha)\cos(\theta) - \sin(\beta)\sin(\theta)\sin(\phi) \\ \sin(\beta)\cos(\alpha)\sin(\theta)\cos(\phi) + \sin(\beta)\sin(\alpha)\cos(\theta) - \cos(\beta)\sin(\theta)\sin(\phi) \\ -\sin(\alpha)\sin(\theta)\cos(\phi) + \cos(\alpha)\cos(\theta) \end{bmatrix}$

University of Illinois Optical and Discharge Physics

EXAMPLE: ELECTRON SWARM

- A swarm of electrons drifts in a uniform electric field in a gas having a constant elastic collision frequency and isotropic collisions. What is the average drift velocity?
- For constant collision frequency v, the randomly selected time between collisions is:

$$\Delta t = -\frac{1}{v} \cdot alog(1-r)$$

• The change in energy in an elastic collision is

$$\Delta \varepsilon = \left(1 - \frac{2m_e}{M} \left(1 - \cos(\theta) \right) \right)$$

EXAMPLE: PROGRAM DRIFT

```
PROGRAM DRIFT
CCCCC
        Initialize randmom number generators. IMPORTANT: Use a different
        sequence of random numbers for different processes
        DO I=1,3
          CALL INIT_RAN(I)
        END DO
С
                                          ! Electron mass (g)
! Atomic mass (g)
        XMASSE=0.911E-27
        XMASSN=20.*1.67E-24
С
С
        Select electric field and collision frequency.
C
                                          ! V/cm. Assume in the x-direction
        EFIELD=5.
        COLF=1.E9
                                          ! 1/s
        ACX=EFIELD*1.6E-12/XMASSE
                                          ! Acceleration
        IELECTRONS=1000
                                          ! Number of electron particles
                                            Drift distance (cm)
        XEND=20.
                                          !
                                            Drift time (s)
        TTOTAL=0.
                                          ! Drift velocity
! Normalization constant
        VDRIFT=0.
        XNORM=0.
С
```

EXAMPLE: PROGRAM DRIFT

```
DO I=1,IELECTRONS
           X=0.
           TTOTAL=0.
           VX=0.
          VY=0.
          VZ=0.
C
C
        Randomly choose time to next collision
С
   50
           DT = -(1./COLF) * LOG(1.-RAN(1))
С
        Update position, speed of particle
С
С
          X=X+VX*DT+0.5*ACX*DT*DT
          VX=VX+ACX*DT
          TTOTAL=TTOTAL+DT
С
        Electron has not reached XEND. Perform Scatter
С
С
           IF (X.LT.XEND) THEN
             V = SQRT(VX^{*2} + VY^{*2} + VZ^{*2})
С
С
        Eularian Angles
C
             BETA=ATAN2(VY,VX)
             ALPHA=ACOS(VZ/V)
С
С
        Randomly choose scattering angles
С
             THETA=ACOS(2.*RAN(2)-1.)
             PHI=2*PI*RAN(3)
```

EXAMPLE: PROGRAM DRIFT

		Account for energy loss during elastic collision V=V*SQRT(1(2.*XMASSE/XMASSN)*(1COS(THETA))) Perform scatter				
	+ +	VX=V*(COS(BETA)*COS(ALPHA)*SIN(THETA)*COS(PHI)+ COS(BETA)*SIN(ALPHA)*COS(THETA)-SIN(BETA)*SIN(THETA)*SIN(PHI)) VY=V*(SIN(BETA)*COS(ALPHA)*SIN(THETA)*COS(PHI)+ SIN(BETA)*SIN(ALPHA)*COS(THETA)+COS(BETA)*SIN(THETA)*SIN(PHI)) VZ=V*(-SIN(ALPHA)*SIN(THETA)*COS(PHI)+COS(ALPHA)*COS(THETA))				
		Advance trajectories until the next collision GO TO 50 END IF				
		Electron has drifted at least XEND VDRIFT=VDRIFT+X/TTOTAL XNORM=XNORM+1. END DO				
c c		VDRIFT=VDRIFT/XNORM PRINT *, 'VDRIFT=',VDRIFT,' cm/s' END				

EXAMPLE: ELECTRON SWARM

- Collision frequency = 1.048 x 10⁹ s⁻¹
- Drift distance = 20 cm
- E/N (Electric field/gas number density) = 1-10 x 10⁻¹⁷ V-cm3
- Electron particles=50-500 per E/N

MUTIPLE COLLISIONS

 Real atoms/molecules have many electron collision processes (elastic, vibrational excitation, electronic excitation, ionization) with separate differential cross sections.

These processes can be statistically accounted for using MC techniques

MODEL CROSS SECTIONS

 Compute collision frequencies for each process j having collision partner density N_i,

$$v_{j}(\varepsilon) = \left(\frac{2\varepsilon}{m_{e}}\right)^{1/2} \sigma_{j}(\varepsilon) N_{j}, \quad v_{total}(\varepsilon) = \sum_{j} v_{j}(\varepsilon)$$

University of Illinois Optical and Discharge Physics

MCSHORT_02_16

CUMULATIVE COLLISION PROBABILITY

 Cumulative collision probability is sum of probability of experiencing "yours" and all "previous" collisions. (Note: Order of summation is not important.)

University of Illinois Optical and Discharge Physics

COLLISION SELECTION PROCESS

 Choose time between collisions based on total collision frequency.

$$\Delta t = \frac{-l}{v_{total}(\varepsilon)} \log(l - r_l)$$

 The collision which occurs is that which satisfies

$$p_{j-1}(\varepsilon) < r_2 \le p_j(\varepsilon)$$

NULL COLLISION FREQUENCY

- The electron energy and collision frequency can change during the free flight between collisions.
- There is an ambiguity in choosing the time between collisions.
- The ambiguity is eliminated by the "null collision frequency" (NCF).

• The NCF is a fictitious process used to make it appear that all energies have the same collision frequency.

$$v_{null}(\varepsilon) = Max[v_{total}(\varepsilon)] - v_{total}(\varepsilon)$$

COLLISION SELECTION PROCESS WITH NULL

 Choose time between collisions based on maximum total collision frequency.

$$\Delta t = \frac{-1}{Max[v_{total}(\varepsilon)]}\log(1-r_{l})$$

• The collision which occurs is that which satisfies.

$$p_{j-1}(\varepsilon) < r_2 \le p_j(\varepsilon)$$

• If the null is chosen, disregard the collision. Allow the electron to proceed to the next free flight without changing its velocity.

SPATIALLY VARYING COLLISION FREQUENCY

• In many of the systems of interest, the density of the collision partner depends on position and time.

$$v_{j}(\varepsilon, x, t) = \left(\frac{2\varepsilon}{m_{e}}\right)^{1/2} \sigma_{j}(\varepsilon) N_{j}(x, t)$$

• The choice of $v_{total}(\varepsilon)$ can be ambiguous.

EXTENSION OF NULL METHOD TO ACCOUNT FOR N(x,t)

- Sample time/space domain to determine $Max[N_i(x,t)]$.
- Compute $v_j(\varepsilon)$, $v_{total}(\varepsilon)$, $Max[v_{total}(\varepsilon)]$, $v_{null}(\varepsilon)$ using $Max[N_j(x,t)]$.

• Timestep:
$$\Delta t = \frac{-1}{Max[v_{total}(\varepsilon, x)]} \log(1 - r_1)$$

•
$$x = x + v \cdot \Delta t$$
, $v = v + a \cdot \Delta t$

• Collision:
$$p_{j-1}(\varepsilon) < r_2 \le p_j(\varepsilon)$$

•
$$j = Null \rightarrow next \ trajectory$$

•
$$r_3 > \frac{N_j(x,t)}{Max[N_j(x,t)]} \rightarrow Null \rightarrow next trajectory$$

• scattering
$$(\theta, \phi) = F^{-1}(r_4, r_5)$$

• Scattering Matrix

University of Illinois Optical and Discharge Physics

0

SAMPLING AND INTEGRATION METHODS

- Electron distributions are obtained by sampling the particle trajectories; binning particles by energy, velocity, position to obtain $f(\varepsilon, \vec{r}, t)$ or $f(\vec{v}, \vec{r}, t)$.
- How you sample affects the distribution function you derive.
- Integration Δt should be less than: Δt_{col} , fraction of $1/v_{rf}$, fraction of $\left[\frac{v}{E}\frac{dE}{dx}\right]^{-1}$ or other constraining frequencies.
- ∆t can be different for each particle. Particles can "diverge in time" until they reach a time when they must be coincident.
- Recommended sampling and integration strategy:
 - •Choose t(next collision) = t(last collision) + Δt_{col}
 - •Integrate using $\Delta t \leq t$ t(next collision)
 - •Sample particles for every Δt weighting the contribution by Δt .
 - •When reach t(next collision), collide and choose new Δt_{col}

University of Illinois Optical and Discharge Physics

EXAMPLE: ELECTRON ENERGY DISTRIBUTION

- Compute electron energy distribution and rate coefficients for idealized cross sections.
- Conditions:
- E/N: 100 x 10⁻¹⁷ V-cm² (100 Td)
- Drift distance: 3 cm (sample after 0.5 cm)
- Number of Particles: 2000

EXAMPLE: ELECTRON ENERGY DISTRIBUTION

• Lesson!!! Do NOT compute rate coefficients by counting collisions! Directly compute rate coefficients from EED.

$$k(\vec{r},t) = \int f(\varepsilon,\vec{r},t) \left(\frac{2\varepsilon}{m_e}\right)^{1/2} \sigma(\varepsilon) \varepsilon^{1/2} d\varepsilon$$

EXAMPLE: ELECTRON ENERGY DISTRIBUTION

• Required samplings are dictated by the tail of the EED. Rate coefficients for high threshold events are sensitive to the tail.

Rate Coers: Elastic	1.08 X 10	1.08 X 10	1.08 X 10	1.08 X 10
Electronic ($\Delta \epsilon$ = 8 eV)	1.98 x 10 ⁻⁹	1.99 x 10 ⁻⁹	2.00 x 10 ⁻⁹	1.99 x 10 ⁻⁹
Ionization ($\Delta \epsilon$ = 16 eV)	1.23 x 10 ⁻¹³	6.51 x 10 ⁻¹⁴	6.84 x 10 ⁻¹⁴	9.94 x 10 ⁻¹⁴
Samplings	2,953,842	5,899,608	29,327,876	117,332,716

EFFICIENCY ISSUES

- Create look-up tables where-ever possible (memory and lookups are cheap, computations are expensive).
- Minimize null-collisions by having sub-intervals of energy range with different $Max[v_{total}(\varepsilon)]$.
- Be cognizant of "pipelining" opportunities. Perform array operations with stencils to include-exclude indices for particles which are added-removed due to attachment, losses to walls or ionization.
- Take advantage of cyclic conditions to bin particles by phase as opposed to time.
- NEVER hardwire anything!! Define all cross sections, densities from "outside."

ADVANCED TOPICS

TYPICAL INDUCTIVELY COUPLED PLASMA FOR ETCHING

• Power is coupled into the plasma by both inductive and capacitive routes.

WALK THROUGH: Ar/Cl₂ PLASMA FOR p-Si ETCHING

- The inductively coupled electromagnetic fields have a skin depth of 3-4 cm.
- Absorption of the fields produces power deposition in the plasma.
- Electric Field (max = 6.3 V/cm)
 - Ar/Cl₂ = 80/20
 - 20 mTorr
 - 1000 W ICP 2 MHz
 - 250 V bias, 2 MHz (260 W)

Ar/Cl₂ ICP: POWER AND ELECTRON TEMPERATURE

• ICP Power heats electrons, capacitively coupled power dominantly accelerates ions.

 Ar/Cl₂ = 80/20, 20 mTorr, 1000 W ICP 2 MHz, 250 V bias, 2 MHz (260 W)

Ar/Cl₂ ICP: IONIZATION

• Ionization is produced by bulk electrons and sheath accelerated secondary electrons.

 Ar/Cl₂ = 80/20, 20 mTorr, 1000 W ICP 2 MHz, 250 V bias, 2 MHz (260 W)

Ar/Cl₂ ICP: POSITIVE ION DENSITY

• Diffusion from the remote plasma source produces uniform ion densities at the substrate.

HYBRID PLASMA EQUIPMENT MODEL

• The wave equation is solved in the frequency domain using sparse matrix techniques (2D,3D):

$$-\nabla \left(\frac{1}{\mu} \nabla \cdot \overline{E}\right) + \nabla \cdot \left(\frac{1}{\mu} \nabla \overline{E}\right) = \frac{\partial^2 \left(\varepsilon \overline{E}\right)}{\partial t^2} + \frac{\partial \left(\overline{\overline{\sigma}} \cdot \overline{E} + \overline{J}\right)}{\partial t}$$
$$\vec{E}(\vec{r},t) = \vec{E}'(\vec{r}) \exp(-i(\omega t + \varphi(\vec{r})))$$

• Conductivities are tensor quantities (2D,3D):

$$\overline{\overline{\sigma}} = \sigma_o \frac{mv_m}{q\alpha} \frac{1}{\left(\alpha^2 + \left|\vec{B}\right|^2\right)} \begin{pmatrix} \alpha^2 + B_r^2 & \alpha B_z + B_r B_\theta & -\alpha B_\theta + B_r B_z \\ -\alpha B_z + B_r B_\theta & \alpha^2 + B_\theta^2 & \alpha B_r + B_\theta B_z \\ -\alpha B_\theta + B_r B_z & -\alpha B_r + B_\theta B_z & \alpha^2 + B_z^2 \end{pmatrix}$$
$$\overline{j} = \overline{\overline{\sigma}} \cdot \vec{E} \qquad \qquad \alpha = \frac{\left(i\omega + v_m\right)}{q/m}, \quad \sigma_o = \frac{q^2 n_e}{mv_m}$$

University of Illinois Optical and Discharge Physics

EIND_0502_10

• The electrostatic term in the wave equation is addressed using a perturbation to the electron density (2D).

$$\nabla \cdot \overline{E} = \frac{\rho}{\varepsilon} = \frac{q \Delta n_e}{\varepsilon}, \quad \Delta n_e = -\nabla \cdot \left(\frac{\overline{\overline{\sigma}} \cdot \overline{E}}{q}\right) / \left(\frac{1}{\tau} + i\omega\right)$$

• Conduction currents can be kinetically derived from the Electron Monte Carlo Simulation to account for non-collisional effects (2D).

$$\mathbf{J}_{e}(\vec{r},t) = J_{o}(\vec{r})\exp(i(\omega t + \phi_{v}(\vec{r}))) = -qn_{e}(\vec{r})\vec{v}_{e}(\vec{r})\exp(i(\omega t + \phi_{v}(\vec{r})))$$

• Continuum (2D,3D):

$$\partial \left(\frac{3}{2}n_e kT_e\right) / \partial t = S(T_e) - L(T_e) - \nabla \cdot \left(\frac{5}{2}\Phi kT_e - \overline{\overline{\kappa}}(T_e) \cdot \nabla T_e\right) + S_{EB}$$

where	S(T _e)	=	Power deposition from electric fields
	L(T _e)	=	Electron power loss due to collisions
	Φ	=	Electron flux
	к (Т _)	=	Electron thermal conductivity tensor
	S _{EB}	=	Power source source from beam electrons
	₩EB	—	

- Power deposition has contributions from wave and electrostatic heating.
- <u>Kinetic (2D,3D)</u>: A Monte Carlo Simulation is used to derive $f(\varepsilon, \vec{r}, t)$ including electron-electron collisions using electromagnetic fields from the EMM and electrostatic fields from the FKM.

University of Illinois Optical and Discharge Physics

PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species (with jump conditions at boundaries) (2D,3D).

$$\begin{aligned} \frac{\partial N_i}{\partial t} &= -\nabla \cdot (N_i \vec{v}_i) + S_i \\ \frac{\partial (N_i \vec{v}_i)}{\partial t} &= \frac{1}{m_i} \nabla (k N_i T_i) - \nabla \cdot (N_i \vec{v}_i \vec{v}_i) + \frac{q_i N_i}{m_i} (\vec{E} + \vec{v}_i \times \vec{B}) - \nabla \cdot \overline{\mu}_i \\ &- \sum_j \frac{m_j}{m_i + m_j} N_i N_j (\vec{v}_i - \vec{v}_j) v_{ij} \\ \frac{\partial (N_i \varepsilon_i)}{\partial t} + \nabla \cdot Q_i + P_i \nabla \cdot U_i + \nabla \cdot (N_i U_i \varepsilon_i) = \frac{N_i q_i^2 v_i}{m_i (v_i^2 + \omega^2)} E^2 \\ &+ \frac{N_i q_i^2}{m_i v_i} E_s^2 + \sum_j 3 \frac{m_{ij}}{m_i + m_j} N_i N_j R_{ij} k_B (T_j - T_i) \pm \sum_j 3 N_i N_j R_{ij} k_B T_j \end{aligned}$$

• Implicit solution of Poisson's equation (2D,3D):

$$\nabla \cdot \varepsilon \nabla \Phi (t + \Delta t) = - \left(\rho_s + \sum_i q_i N_i - \Delta t \cdot \sum_i \left(q_i \nabla \cdot \vec{\phi}_i \right) \right)$$

University of Illinois Optical and Discharge Physics

AVS01_05

FORCES ON ELECTRONS IN ICPs

- Inductive electric field provides azimuthal acceleration; penetrates $\delta = (m_e / (e^2 \mu_o n_e))^{\frac{1}{2}}$ (1-3 cm)
- Electrostatic (capacitive); penetrates $\lambda_s \approx 10 \lambda_D$, $\lambda_D = \left(kT_e / \left(8\pi n_e e^2 \right) \right)^{\frac{1}{2}}$ (100s µm to mm)
- Non-linear Lorentz Force $\vec{F} = v_{\theta} \times \vec{B}_{rf}$

• Ref: V. Godyak, "Electron Kinetics of Glow Discharges"

• Collisional heating:

$$\lambda_{mfp} < \delta_{skin}, \quad \vec{J}_{e}(\vec{r},t) = \sigma(\vec{r},t)\vec{E}(\vec{r},t)$$

• Anomalous skin effect:

$$\begin{aligned} \lambda_{mfp} &> \delta_{skin} \\ \vec{J}_{e}(\vec{r},t) = \iint \sigma(\vec{r},\vec{r}',t,t') \vec{E}(\vec{r}',t') d\vec{r}' dt' \\ \vec{F} &= \vec{v} \times \vec{B} \end{aligned}$$

- Electrons receive (positive) and deliver (negative) power from/to the E-field.
- E-field is non-monotonic.

COLLISIONLESS TRANSPORT ELECTRIC FIELDS

• We capture these affects by kinetically deriving electron current.

$$\oint \vec{j}(\vec{r}) \exp(i\omega(t-t_o)) \cdot dA = \sum_k q_k \vec{v}_k(\vec{r}) \exp(i\omega(t_k-t_o))$$

- E_{θ} during the rf cycle exhibits extrema and nodes resulting from this non-collisional transport.
- "Sheets" of electrons with different phases provide current sources interfering or reinforcing the electric field for the next sheet.
- Axial transport results from $\vec{v} \times B_{rf}$ forces.

POWER DEPOSITION: POSITIVE AND NEGATIVE

• The end result is regions of positive and negative power deposition.

SNLA_0102_19

POWER DEPOSITION vs FREQUENCY

• The shorter skin depth at high frequency produces more layers of negative power deposition of larger magnitude.

SNLA_0102_32

TIME DEPENDENCE OF EEDs: FOURIER ANALYSIS

- To obtain time dependent EEDs, Fourier transforms are performed "on-the-fly" in the Electron Monte Carlo Simulation.
- As electron trajectories are integrated, complex Fourier coefficients and weightings are incremented by.

$$\Delta \Psi_n(\varepsilon_i, \vec{r}_k) = \sum_j w_j \Delta t_j \exp(in\omega t_j) \delta((\varepsilon_i \pm \frac{1}{2}\Delta\varepsilon_i) - \varepsilon_j) \sum_k \delta((\vec{r}_{l+k} \pm \frac{1}{2}\Delta\vec{r}_{l+k}) - \vec{r}_j),$$

$$\Delta W_{jk} = \sum_j w_j \Delta t_j \sum_k \delta((\vec{r}_{l+k} \pm \frac{1}{2}\Delta\vec{r}_{l+k}) - \vec{r}_j)$$

• The Fourier coefficients are then obtained from:

$$A_n(\varepsilon_i, \vec{r}_k) = \left| \frac{\Psi_n(\varepsilon_i, \vec{r}_k)}{W_{ik}} \right|, \ \phi_n(\varepsilon_i, \vec{r}_k) = \tan^{-1} \left(\frac{\operatorname{Im}[\Psi_n(\varepsilon_i, \vec{r}_k)]}{\operatorname{Re}[\Psi_n(\varepsilon_i, \vec{r}_k)]} \right)$$

TIME DEPENDENCE OF EEDs: FOURIER ANALYSIS

• The time dependence of the nth harmonic of the EED is then reconstructed

$$f_n(\varepsilon, \vec{r}, t) = A_n(\varepsilon, \vec{r}) \sin[\omega nt + \phi_n(\varepsilon, \vec{r})]$$

• ...and the total time dependence of the electron distribution function is obtain from summation of the harmonics:

$$f(\varepsilon, \vec{r}, t) = \sum_{n=0}^{N} f_n(\varepsilon, \vec{r}, t)$$

....where f_0 is the time averaged distribution function.

University of Illinois Optical and Discharge Physics

EXCITATION RATES: "ON THE FLY"

- In a similar manner, Fourier components of excitation rates can be obtained directly from the Electron MCS
- For the nth harmonic of the mth process,

$$k'_{nml} \rightarrow k'_{nml} + \sum_{j} w_{j} \sigma_{m}(\varepsilon_{j}) \upsilon_{j} \exp(in\omega t) \sum_{k} \delta((\vec{r}_{l+k} \pm \frac{1}{2}\Delta \vec{r}_{l+k}) - \vec{r}_{j})$$

• The resulting Fourier coefficients then reconstruct the time dependence of electron impact source functions.

$$S_{ml}(t) = [e]_l N_{ml} \sum_{n=0}^{n_m} |k_{nml}| \sin(n\omega t + \phi_{nml}),$$

$$\phi_{nml} = \tan^{-l} \frac{\operatorname{Im}(k_{nml})}{\operatorname{Re}(k_{nml})}$$

ALGORITHM FOR E-E COLLISIONS

- The basis of the algorithm for e-e collisions is "particle-mesh".
- Statistics on the EEDs are collected according to spatial location.
- A collision target is randomly selected from the EED at that location and a random direction is assigned for the target's velocity.
- The relative speed between the electron and its target electron is used to determine the probability for an e-e collision

$$P_{ee} = n_e(\vec{r}) \cdot \sigma_{ee}(v) \cdot v \cdot \Delta t, \quad v = \left| \vec{v}_{e1} - \vec{v}_{e2} \right|$$
$$\sigma_{ee}(v) = 4\pi b_o^2 \left[1 + \ln\left(\frac{\lambda_D}{b_o}\right) \right], \quad b_o = \frac{q^2/4\pi\varepsilon_o}{\frac{1}{2}m_e v^2}$$

- If a collision occurs, classical collision dynamics determine the change in momentum of the electron.
- The consequences of e-e collisions on the targets are obtained by continuously updating the stored EEDs.

ICP CELL FOR INVESTIGATION

• The experimental cell is an ICP reactor with a Faraday shield to minimize capacitive coupling.

TYPICAL CONDITIONS: Ar, 10 mTorr, 200 W, 7 MHz

• On axis peak in [e] occurs in spite of off-axis power deposition and off-axis peak in electron temperature.

TIME DEPENDENCE OF THE EED

- Time variation of the EED is mostly at higher energies where electrons are more collisional.
- Dynamics are dominantly in the electromagnetic skin depth where both collisional and non-linear Lorentz Forces) peak.
- The second harmonic dominates these dynamics.

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

ANIMATION SLIDE

TIME DEPENDENCE OF THE EED: 2nd HARMONIC

- Electrons in skin depth quickly increase in energy and are "launched" into the bulk plasma.
- Undergoing collisions while traversing the reactor, they degrade in energy.
- Those surviving "climb" the opposite sheath, exchanging kinetic for potential energy.
- Several "pulses" are in transit simultaneously.

• Amplitude of 2nd Harmonic

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

ANIMATION SLIDE

HARMONICS IN ICP

- To investigate harmonics an Ar/N₂ gas mixture was selected as having low and high threshold processes.
- e⁻ + Ar → Ar⁺ + e⁻ + e⁻, Δε = 16 eV
 High threshold reactions capture modulation in the tail of the EED.
- $e^- + N_2 \rightarrow N_2$ (vib) + e^- , $\Delta \epsilon = 0.29 \text{ eV}$

Low threshold reactions capture modulation of the bulk of the EED.

- Base case conditions:
 - Pressure: 5 mTorr
 - Frequency: 13.56 MHz
 - Ar / N₂: 90 / 10
 - Power : 650 W

SOURCES FUNCTION vs TIME: THRESHOLD

 Ionization of Ar has more modulation than vibrational excitation of N₂ due to modulation of the tail of the EED.

HARMONICS OF Ar IONIZATION: FREQUENCY

- At large ω, both υ_m/ω and 1/(υ_mω) are small, and so both collisional and NLF harmonics are small.
- At small ω , both υ_m/ω and $1/(\upsilon_m \omega)$ are large. Both collisional and NLF contribute to harmonics.
- 0.5 S_2 0.4 0.3 S_n / S₀ 0.2 S4 0.1 S₁, S₃ 0.0 30 20 40 10 50 0 Frequency (MHz)
 - Harmonic Amplitude/Time Average

• Ar/N₂=90/10, 5 mTorr

- At large P, υ_m/ω is large and 1/(υ_mω) is small. Harmonics result from collisional (or linear) processes.
- At small P, υ_m/ω is small and 1/(υ_mω) are large. Harmonics likely result from NLF.

Harmonic Amplitude/Time Average

TIME DEPENDENCE OF Ar IONIZATION: PRESSURE

• Although B_{rf} may be nearly the same, at large P, v_{θ} and mean-free-paths are smaller, leading to lower harmonic amplitudes.

