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MONTE CARLO METHODS FOR ELECTRON TRANSPORT

• The Monte Carlo  (MC) method was developed during WWII for 
analysis of neutron moderation and transport. 

• MC methods enable direct simulation of complex physical 
phenomena which may not be amenable to conventional PDE 
analysis.

• The method relies upon knowledge of probability functions for 
the phenomena of interest to statistically (randomly) select 
occurrences of events whose ensemble average is “the answer”.

• These methods are extensively used in simulating electron 
transport do obtain, for example, electron energy distributions.
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EXAMPLE: ELECTRON ENERGY DISTRIBUTION IN ICP

• Inductively Coupled Plasma: Ar, 10 mTorr, 6.78 MHz

MCSHORT_02_31

• EED at r= 4.5 cm vs
Distance from Window

• Electric field (overlay) 
and ion density (max = 
1.7 x 1011 cm-3)
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BASICS OF THE MONTE CARLO METHOD: p(x)

• A physical phenomenon has a known probability distribution 
function p(x) which, for example, gives the probability of an event 
occurring at position x.
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BASICS OF THE MONTE CARLO METHOD: P(x)

• The cumulative probability distribution function P(x) is the 
likelihood that an event has occurred prior to x. 
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• Since p(x) is always positive, there is a 1-to-1 mapping of r=[0,1] 
onto P(x = 0 →x = ∞). 
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RANDOM USE OF P(x) TO REGENERATE p(x)

• By randomly choosing “product values” of P(x) (distributed [0,1]) 
and binning the occurrences of the argument x, we reproduce p(x). 
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• The function which, given 
a random number r=[0,1], 
provides a randomly 
selected value of x is:
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EXAMPLE: RANDOM P(x) TO REGENERATE p(x)

MCSHORT_02_06
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• WARNING!!! In practical problems, p(x) cannot be analytically 
integrated for P(x) and/or P(x) cannot be analytically inverted for   
P-1(x).  These operations must be done numerically. 
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EXAMPLE: RANDOM P(x) TO REGENERATE p(x)

MCSHORT_02_07

• p(x) is reproduced within random 
statistical error (n-1/2=0.01).

ibins=100
itrials=10000
deltax=2
xmax=10.
dx=xmax/ibins
ynorm=0.
do i=1,itrials
r = random(iseed)
x=-deltax*alog(1.-r)
ibin=x/dx
ynorm=ynorm+dx
y(ibin)=y(ibin)+1.

end do
do i=1,ibins
y(i)=y(i)/ynorm

end do 
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ELECTRON SCATTERING

MCSHORT_02_08

• An electron with energy ε collides with an atom with 
differential cross section 

providing the likelihood of scattering into the solid angle 
centered on            .         

Note: Typically only the explicit dependence on polar angle θ
is considered. Scattering with azimuthal angle ϕ is usually 
assumed to be uniform. 

( )φθεσ ,,

( )φθ ,
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DIFFERENTIAL SCATTERING

MCSHORT_02_09

• for real atoms
and molecules can be 
quite complex (C2F6)  

Christophorou, J. Chem. Phys.
Ref. Data 27, 1, (1998)

• Accounting for forward scattering at higher energies (> 10s 
eV) is very important in simulating electron transport.

• Assuming Isotropic scattering in the polar direction yields:
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1. Determine Eularian angles             of 
2. Rotate frame by             so z-, x-axes align with
3. Rotate             by             to yield direction of 
4. Account for change in speed
5. Rotate frame by                   to original orientation
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COLLISION  DYNAMICS

MCSHORT_02_10

• To account for the change in velocity of an electron following 
a collision:

initialvr

( )φθ , finalvr

( )αβ ,
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COLLISION  DYNAMICS

MCSHORT_02_11

• End result is the “scattering matrix” which transforms initial 
velocity to final velocity:
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EXAMPLE: ELECTRON SWARM 

MCSHORT_02_12

• A swarm of electrons drifts in a uniform electric field in a gas
having a constant elastic collision frequency and isotropic 
collisions. What is the average drift velocity?

• For constant collision frequency ν, the randomly selected 
time between collisions is:

• The change in energy in an elastic collision is

)( r1alog1t −⋅−=∆
ν
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EXAMPLE: PROGRAM DRIFT 

MCSHORT_02_13a
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EXAMPLE: PROGRAM DRIFT 
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EXAMPLE: PROGRAM DRIFT 
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EXAMPLE: ELECTRON SWARM 

MCSHORT_02_14

• Collision frequency = 1.048 x 109 s-1

• Drift distance = 20 cm
• E/N (Electric field/gas number density) = 1-10 x 10-17 V-cm3
• Electron particles=50-500 per E/N
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• Real atoms/molecules have many electron collision processes 
(elastic, vibrational excitation, electronic excitation, ionization) 
with separate differential cross sections.

• These processes can be statistically accounted for using MC 
techniques

C2F6
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MUTIPLE COLLISIONS 

MCSHORT_02_15

Christophorou, J. Chem. 
Phys. Ref. Data 27, 1, 
(1998)
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MODEL CROSS SECTIONS 

MCSHORT_02_16
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collision partner density Nj, 
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CUMULATIVE COLLISION PROBABILITY 

MCSHORT_02_17

• Cumulative collision probability is sum of probability of 
experiencing “yours” and all “previous” collisions.  (Note: 
Order of summation is not important.)
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COLLISION SELECTION PROCESS 

MCSHORT_02_18

• Choose time between 
collisions based on total 
collision frequency.  
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NULL COLLISION FREQUENCY 

MCSHORT_02_19

• The electron energy and 
collision frequency can 
change during the free 
flight between collisions.

• There is an ambiguity in 
choosing the time 
between collisions.

• The ambiguity is 
eliminated by the “null 
collision frequency” 
(NCF).   
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NULL COLLISION FREQUENCY 

MCSHORT_02_20

• The NCF is a fictitious process used to make it appear 
that all energies have the same collision frequency.  
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• Cumulative Probabilities 
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COLLISION SELECTION PROCESS WITH NULL 

MCSHORT_02_21

• Choose time between 
collisions based on 
maximum total collision 
frequency.  
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• The collision which occurs 
is that which satisfies.
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• If the null is chosen, disregard the collision.  Allow the electron 
to proceed to the next free flight without changing its velocity.
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SPATIALLY VARYING COLLISION FREQUENCY

MCSHORT_02_22

• [e] and Cl2 densities 
in an ICP for etching 
(Ar/Cl2=80/20, 15 
mTorr)

• In many of the systems of interest, the density of the collision
partner depends on position and time.

• The choice of                 can be ambiguous.
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EXTENSION OF NULL METHOD TO ACCOUNT FOR N(x,t)

MCSHORT_02_23

• Sample time/space domain to determine                        .
• Compute                                         using .
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SAMPLING AND INTEGRATION METHODS

MCSHORT_02_24

• Electron distributions are obtained by sampling the particle 
trajectories; binning particles by energy, velocity, position to
obtain .

• How you sample affects the distribution function you derive.
• Integration ∆t should be less than: ∆tcol, fraction of 1/νrf,  

fraction of               or other constraining frequencies.  
• ∆t can be different for each particle. Particles can “diverge in 

time” until they reach a time when they must be coincident. 
• Recommended sampling and integration strategy:

•Choose t(next collision) = t(last collision) + ∆tcol
•Integrate using ∆t ≤ t- t(next collision) 
•Sample particles for every ∆t weighting the contribution 
by ∆t .
•When reach t(next collision), collide and choose new ∆tcol

( ) ( )trvfortrf ,,,, rrrε
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EXAMPLE: ELECTRON ENERGY DISTRIBUTION

MCSHORT_02_25

• Compute electron energy 
distribution and rate coefficients 
for idealized cross sections.

• Conditions:

• E/N: 100 x 10-17 V-cm2 (100 Td)
• Drift distance: 3 cm (sample after 

0.5 cm)
• Number of Particles: 2000 0
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EXAMPLE: ELECTRON ENERGY DISTRIBUTION

MCSHORT_02_26

• Sampling method
• 1: Every ∆tcol
• 2: Every ∆t (constant) < ∆tcol

• Rate Coefficients (cm3/s)
•Elastic 1.1 x 10-7

•Electronic 2.0 x 10-9

•Ionization  9.9 x 10-14

• Number of Collisions:
•Elastic 1.46 x 107

•Electronic 2.21 x 105

•Ionization        10
•Null            5.93 x 107

• Lesson!!! Do NOT compute rate coefficients by counting 
collisions!  Directly compute rate coefficients from EED.
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EXAMPLE: ELECTRON ENERGY DISTRIBUTION

MCSHORT_02_27

• Required samplings are dictated by the tail of the EED.  Rate 
coefficients for high threshold events are sensitive to the tail.
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EFFICIENCY ISSUES

MCSHORT_02_28

• Create look-up tables where-ever possible (memory and 
lookups are cheap, computations are expensive).

• Minimize null-collisions by having sub-intervals of energy 
range with different                         .

• Be cognizant of “pipelining” opportunities.  Perform array 
operations with stencils to include-exclude indices for 
particles which are added-removed due to attachment, losses 
to walls or ionization. 

• Take advantage of cyclic conditions to bin particles by phase 
as opposed to time.

• NEVER hardwire anything!! Define all cross sections, densities 
from “outside.”

( )[ ]εν totalMax



ADVANCED TOPICS
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TYPICAL INDUCTIVELY COUPLED PLASMA FOR ETCHING

• Power is coupled into the plasma by both inductive and capacitive 
routes.

EIND_0502_04
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WALK THROUGH: Ar/Cl2 PLASMA FOR p-Si ETCHING

EIND_0502_05

• The inductively coupled 
electromagnetic fields have 
a skin depth of 3-4 cm.

• Absorption of the fields 
produces power deposition 
in the plasma.

• Electric Field (max = 6.3 
V/cm)

• Ar/Cl2 = 80/20
• 20 mTorr
• 1000 W ICP 2 MHz
• 250 V bias, 2 MHz (260 W)
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Ar/Cl2 ICP: POWER  AND ELECTRON TEMPERATURE

EIND_0502_06

• ICP Power heats electrons, capacitively coupled power 
dominantly accelerates ions.

• Ar/Cl2 = 80/20, 20 mTorr, 1000 W ICP 2 MHz,
250 V bias, 2 MHz (260 W)

• Power Deposition (max = 0.9 W/cm3) • Electron Temperature (max = 5 eV)
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Ar/Cl2 ICP: IONIZATION

EIND_0502_07

• Ionization is produced by bulk electrons and sheath 
accelerated secondary electrons. 

• Ar/Cl2 = 80/20, 20 mTorr, 1000 W ICP 2 MHz,
250 V bias, 2 MHz (260 W)

• Beam Ionization
(max = 1.3 x 1014 cm-3s-1)

• Bulk Ionization
(max = 5.4 x 1015 cm-3s-1)
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Ar/Cl2 ICP: POSITIVE ION DENSITY

EIND_0502_08

• Diffusion from the remote plasma source produces 
uniform ion densities at the substrate. 

• Ar/Cl2 = 80/20, 20 mTorr, 1000 W ICP 2 MHz,
250 V bias, 2 MHz (260 W)

• Positive Ion Density
(max = 1.8 x 1011 cm-3)
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HYBRID PLASMA EQUIPMENT MODEL

SNLA_0102_39
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ELECTROMAGNETICS MODEL

EIND_0502_10              

• The wave equation is solved in the frequency domain using sparse
matrix techniques (2D,3D):

• Conductivities are tensor quantities (2D,3D):
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ELECTROMAGNETICS MODEL (cont.)

EIND_0502_11             

• The electrostatic term in the wave equation is addressed using a
perturbation to the electron density (2D).

• Conduction currents can be kinetically derived from the Electron
Monte Carlo Simulation to account for non-collisional effects (2D).
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ELECTRON ENERGY TRANSPORT

where S(Te) = Power deposition from electric fields
L(Te) = Electron power loss due to collisions
Φ = Electron flux
κ(Te) = Electron thermal conductivity tensor
SEB = Power source source from beam electrons

• Power deposition has contributions from wave and electrostatic heating.

• Kinetic (2D,3D):  A Monte Carlo Simulation is used to derive 
including electron-electron collisions using electromagnetic fields from 
the EMM and electrostatic fields from the FKM.
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PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species 
(with jump conditions at boundaries) (2D,3D).

AVS01_ 05            

• Implicit solution of Poisson’s equation (2D,3D):
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FORCES ON ELECTRONS IN ICPs

EIND_0502_09

• Inductive electric field provides azimuthal acceleration; penetrates
(1-3 cm)

• Electrostatic (capacitive); penetrates    
(100s µm to mm)

• Non-linear Lorentz Force rfBvF
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• Collisional heating:

• Anomalous skin effect:

• Electrons receive (positive) and deliver 
(negative) power from/to the E-field.

• E-field is non-monotonic.
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ANAMOLOUS SKIN EFFECT AND POWER DEPOSITION

EIND_0502_12

Ref: V. Godyak, “Electron 
Kinetics of Glow Discharges”
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COLLISIONLESS TRANSPORT ELECTRIC FIELDS

• We capture these affects by 
kinetically deriving electron 
current. 

• Eθ during the rf cycle exhibits 
extrema and nodes resulting from 
this non-collisional transport.

• “Sheets” of electrons with 
different phases provide current 
sources interfering or reinforcing 
the electric field for the next sheet.

• Axial transport results from
forces.

EIND_0502_13
• Ar, 10 mTorr, 7 MHz, 100 W
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POWER DEPOSITION: 
POSITIVE AND NEGATIVE

• The end result is regions of positive and 
negative power deposition. 

SNLA_0102_19

• Ar, 10 mTorr, 
7 MHz, 100 W

POSITIVE

NEGATIVE
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POWER DEPOSITION vs FREQUENCY

• The shorter skin depth at high frequency produces more layers of
negative power deposition of larger magnitude.

SNLA_0102_32

• 6.7 MHz
(5x10-5 – 1.4 W/cm3)

• 13.4 MHz
(8x10-5 – 2.2 W/cm3)• Ar, 10 mTorr, 200 W

• Ref: Godyak, PRL (1997)

MAXMIN
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TIME DEPENDENCE OF EEDs: FOURIER ANALYSIS

• To obtain time dependent EEDs, Fourier transforms are 
performed “on-the-fly” in the Electron Monte Carlo Simulation. 

• As electron trajectories are integrated, complex Fourier 
coefficients and weightings are incremented by.
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• The Fourier coefficients are then obtained from:
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TIME DEPENDENCE OF EEDs: FOURIER ANALYSIS

• The time dependence of the nth harmonic of the EED is then 
reconstructed
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• …and the total time dependence of the electron distribution 
function is obtain from summation of the harmonics:

….where f0 is the time averaged distribution function.
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EXCITATION RATES: “ON THE FLY”

• In a similar manner, Fourier components of excitation rates can 
be obtained directly from the Electron MCS

• For the nth harmonic of the mth process,  

• The resulting Fourier coefficients then reconstruct the time 
dependence of electron impact source functions.
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ALGORITHM FOR E-E COLLISIONS 

• The basis of the algorithm for e-e collisions is “particle-mesh”.

• Statistics on the EEDs are collected according to spatial location.

• A collision target is randomly selected from the EED at that location and 
a random direction is assigned for the target’s velocity.

• The relative speed between the electron and its target electron is used to 
determine the probability for an e-e collision
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• If a collision occurs, classical collision dynamics determine the change 
in momentum of the electron.

• The consequences of e-e collisions on the targets are obtained by 
continuously updating the stored EEDs.
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ICP CELL FOR INVESTIGATION

• The experimental cell is an ICP reactor 
with a Faraday shield to minimize 
capacitive coupling.

MCSHORT_02_29
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TYPICAL CONDITIONS:  Ar, 10 mTorr, 200 W, 7 MHz

• On axis peak in [e] occurs in spite of off-axis power deposition 
and off-axis peak in electron temperature. 

MCSHORT_05_30
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TIME DEPENDENCE OF THE EED

• Time variation of the EED is 
mostly at higher energies where 
electrons are more collisional.

• Dynamics are dominantly in the 
electromagnetic skin depth 
where both collisional and non-
linear Lorentz Forces) peak. 

• The second harmonic 
dominates these dynamics.

SNLA_0102_10

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm ANIMATION SLIDE
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TIME DEPENDENCE OF THE EED: 2nd HARMONIC

• Electrons in skin depth quickly 
increase in energy and are 
“launched” into the bulk plasma.

• Undergoing collisions while 
traversing the reactor, they 
degrade in energy.

• Those surviving “climb” the 
opposite sheath, exchanging 
kinetic for potential energy.

• Several “pulses” are in transit 
simultaneously. 

SNLA_0102_11

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

• Amplitude of 2nd Harmonic
ANIMATION SLIDE



HARMONICS IN ICP

• To investigate harmonics an Ar/N2
gas mixture was selected as having 
low and high threshold processes.

• e- + Ar → Ar+ + e- + e-, ∆ε = 16 eV

High threshold reactions capture 
modulation in the tail of the EED.

• e- + N2 → N2 (vib) + e-,   ∆ε = 0.29 eV

Low threshold reactions capture 
modulation of the bulk of the EED.

• Base case conditions: 
• Pressure: 5 mTorr
• Frequency: 13.56 MHz
• Ar / N2: 90 / 10
• Power : 650 W

0.18 2.7

Electron density (1011 cm-3)
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SOURCES FUNCTION vs TIME: THRESHOLD

• Ionization of Ar
6 x 1014 – 3 x 1016 cm-3s-1

MIN MAX

• Excitation of N2(v)
1.4 x 1014 – 8 x 1015 cm-3s-1

• Ionization of Ar has more modulation than vibrational 
excitation of N2 due to modulation of the tail of the EED.
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HARMONICS OF Ar IONIZATION: FREQUENCY

• At large ω, both  υm/ω and 
1/(υmω) are small, and so 
both collisional and NLF 
harmonics are small.

• At small ω, both  υm/ω and 
1/(υmω) are large.  Both 
collisional and NLF 
contribute to harmonics. 
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HARMONICS OF Ar IONIZATION: PRESSURE

Pressure (mTorr)
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• Harmonic Amplitude/Time Average

• Ar/N2=90/10, 13.56 MHz

• At large P, υm/ω is large and 
1/(υmω) is small.  Harmonics 
result from collisional (or 
linear) processes. 

• At small P,  υm/ω is small and 
1/(υmω) are large.  Harmonics  
likely result from NLF. 
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• 5 mTorr
6 x 1014 – 3 x 1016 cm-3s-1

• 20 mTorr
1.5 x 1014 – 1.7 x 1016 cm-3s-1

TIME DEPENDENCE OF Ar IONIZATION: PRESSURE

MAXMIN

• Although Brf may be nearly the same, at large P, vθ and mean-
free-paths are smaller, leading to lower harmonic amplitudes.
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