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MODELING ELECTRONEGATIVE PLASMAS

e This could be avery short talk.....

e There is nothing fundamentally different about modeling
electronegative plasmas from electropositive plasmas.

e You just need to account for “all the physics”.....

e The better your awareness of the physics, the more accurate
your model will be.

e However.....
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MODELING ELECTRONEGATIVE PLASMAS

e Modeling electronegative plasmas is all about plasma chemistry.
e TOo some degree, all electropositive plasmas look alike.

e To model electronegative plasmas well, one must address the
unigue molecular physics of your feedstock gases, their
fragments and products.

e This is what we also call physical chemistry; the physics of
bonds in molecules.

e The better your awareness of the physical chemistry, the more
accurate your model will be.

e Let's begin with how the bonds in molecules determine your
negative ion plasma chemistry.
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DISSOCIATIVE ATTACHMENT

e The majority of negative ions formed in low pressure plasmas
are by dissociative excitation of molecular species.

e+ AB - A +B-

3 Dissociative State
Ae = electron threshold 2
energy D
)
S (4 A A+B
AT = kinetic energy of = A
= EA(B
fragments % Ae \ € o A4E *( )
. o
EA(B) = Electron affinity ¥~ 1L "®pound State AB
of B |
o Intranuclear Separation (R)

e The molecule is excited to either areal or virtual state which has
a curve crossing with a dissociative state. The fragments may
be produce with significant kinetic energy.
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THERMAL DISSOCIATIVE ATTACHMENT

A B, e If the dissociative curve cuts through

Potential Energy (eV)

10 the bottom of the bound state potential
well (r=r,), electrons of “zero” energy
3 can initiate the dissociative attachment.
e Example: e + Cl, —» CI + CI-
E f—
1(}0:. T ) T b T T
4 Kurepa (1878)
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E 07} 5
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e 108 = P et
0 2 4 6 : 0 5 10
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e Ref: Christophorou, J. Phys. Chem. Ref. Data University of lllinois
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INELASTIC DISSOCIATIVE ATTACHMENT

e Dissociative curve intersects potential well at r >r_,. Conservation
of momentum (Ar=0) results in a finite threshold energy.

e Example: e + CF, > F-, CF;-, F,- bvios e R e

10.50 - Eliess
7.00 .

3.50 | .

Dissociative States 0 M
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0.24
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0.08

Cross Section (1 0* SCITIz)

4.00 lis T T T
CF3+F — _ 3.00 | CF, -

Potential Energy U(R)

"“""—-—-—-—-CFS + F- 2.00 + : —
I ~ 1.00f i

‘o Intranuclear Separation (R) o 0
Electron Energy (eV)
e Ref: Christophorou, J. Phys. Chem. Ref. Data
25, 1341 (1996)
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3-BODY NON-DISSOCIATIVE ATTACHMENT

e When the attachment is non-dissociative (e.g., e + O, —» O,-) a 3"
body is usually required to dissipate the momentum of the
Incoming electron.

e The actual attachment process is a series of 1st and 2" order

events.
e+0,—15(0;) Attachment
[02‘ ) —e+0, Autodetachment

[02‘ ) +M — 50, +M Stablization
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3-BODY ATTACHMENT: EFFECTIVE 2-BODY RATE

e The effective two body rate coefficient demonstrates the low
pressure regime where stablization is slow; and the high pressure
limit where autodetachment is not important.

J—l _leJo.J |0 )I +Mkj 0
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( +Mkj
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3-BODY ATTACHMENT: EFFECTIVE 2-BODY RATE

e O, k;=3x101 cm3s,
1 =0.1ns, k, =5 x 1019 cm3s-!

High pressure limit reached
k1 High Pressure Limit at 4 atm
% Mko >> 1/ e Almost always acceptable to
_8 (Collisional stablization dominates) 5@ 3-body rate coefficient
Q
¢ X B
e+0,+M——0,+M
Fall-off Regime _30 61
(Autodeatchment dominates) k3 ~ k1k2T ~2.3x10"cm™s
Pressure—»

e For (C,Fg)*, t=1pus, and the high pressure limitis at 0.3 Torr.

e ltikawa, J. Phys. Chem. Ref. Data 18, 23 (1989)
e |[. Sauers, J. Chem. Phys. 71, 3016 (1979).
e R.L.Woodin, J. Chem. Phys. 72, 4223 (1980).
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T(gas) DEPENDENCE OF DISSOCIATIVE ATTACHMENT

e Many rate coefficients for dissociative attachment have a strong
dependence on gas temperature due to vibrational-rotational
excitation of molecule.

. Bound State Bound State
i3 o
= = Agy < Agy
S S
< 2
L o o L
T | Ae>0 Vibrational Excitation —
= 8 Dissociative Curve
c c Ag)
2 9 Agl
DCE Dissociative Curve DO_ Vibrational Excitation
| I
ro Intranuclear Separation (R) ro Intranuclear Separation (R)
e Internal energy increases e Internal energy decreases
Ae: dK/dT s <0 Ae: dk/dT >0
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T(gas) DEPENDENCE OF DISSOCIATIVE ATTACHMENT

30
wo - :m = — n— C4F10
£
: g %
Gl § e
3 2
7y} (@] —
8 e
O l;,‘;' E-Z-
2 <
B E E 10 } .
o g 8
[£3] 5 {
e E 500 K
00.5 1,;) 1.I5 2.l0 25 3.10 3.:5 4.}) 4.%) 50
MEAN ELECTRON ENERGY, () (eV)
Energy (eV) e e+C,F > C ki
e e+N,O->N,+O- (L. Christophorou, Cont.
(P. Chantry, J. Chem. Phys. Plasma Phys. 27, 237 (1987))

51, 3369 (1969))
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ION PAIR FORMATION

e Although not usually a large source of negative ions, ion-pair
formation typically occurs at higher electron energies.

e Example:e+CF, > CF;*+F-+e

0.012 ‘

)
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o
o
o
(0]

N e R. A. Bonham, Jpn.
0.006 - o/ ] J. Appl. Phys. 33,

o 4157 (1994)
0.004 \

Cross Section

0.002

0.000
0 60

Electron Energy (eV)
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LOSS PROCESSES: ION-ION NEUTRALIZATION

e Negative ions are consumed in the volume of plasmas
primarily by ion-ion neutralization

A-+B*—>A+B (or Ax+B or A +B*
e Requirement: (lonization Potential); > (Electron Affinity),

e Since the Coulomb forces between are long range; atomic
structure of the core is not terribly important.

! e Rate coefficients generally
@ il oL depend on IP, EA, reduced
Daviinge)
N ——— e mass and scale as T95.
S, R RN Typical values 107 cm 3s -1
S -1 A - A 4+ B*
N ik (300K)
.2 4
BRE S A——— A"+ B e J. T. Moseley, Case Studies
B ol © R(A) in Atomic Physics 5, p. 1
W 5 10 15 20 o0
5 1 LR e e - (1975)
0 10 20 30 40 oo

Rlag)
INTERNUCLEAR SEPARATION
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LOSS PROCESSES: ASSOCIATIVE DETACHMENT

e Association of small radicals to form parent molecules can be
accelerated by detachment as the liberated electron carries
off excess momentum

O-+0—>0,+e, k=2x101cms3s?

K O0+0
3 e Requirement:
—~ 02 w— DO E:\ O + O_
935 O K /,¢ Bond Energy (Dp) >
~— 7 Electron Affinity
Oo"
R
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LOSS PROCESSES: CHARGE EXCHANGE

e Just as positive ions undergo charge exchange if
energetically allowed (A*+B —> A + B*, IP(A) > IP(B)), negative
lons undergo charge exchange.

Potential Energy U(R)

A-+B > A+ B-
e Requirement. EA (B) > EA(A)

CFo +F

e Example: CF,-+F —» CF, + F-
CF2-+F

e Process could be stablized.

F+CF, —* 5(CF;)
y CF2+F (CF; ) ——>F +CF,

NEGPLASMA_0903_15

Intranuclear Separation (R) (CF3_ ) 4+ ML)CF; +M
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SECRET FOR MODELING ELECTRONEGATIVE PLASMAS:
DO NOTHING SPECIAL

e Most approximation methods for electronegative plasmas
breakdown somewhere along the way and require fixes.
Including all the physics really helps....For example:

dn .
e __ _ + — —
=n0,k,— n,O;k, —n0,k, - V-¢,
4 ionization recombination  attachment  transport
dO; e
2 -
d e2 e”2"2 2~2"2 (0
4 ionization = recombination ion-ion neutralization transport
dO,

“=n0,k,- 0,0k, - V'Jo;

dt attachment  jon-ion neutralization  ¢ansport

¢ =q,u;N.E-D,VN,
V-E-= q( , —0, — ne)
80
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TRANSPORT OF NEGATIVE IONS

e In principle, negative ions are simply heavy, cold electrons (T,
<< T,) and obey the same kinetic and transport laws.

e In practice, N- cannot climb the plasma potential barrier
created by ambipolar fields and so are trapped in the plasma.

®=5-10Te

Plasma
Potential

E(ambipolar)

.f f(e)-Electrons

|

/ ; Flux reaching walls

e For conventional plasmas, N- are almost exclusively lost by

volumetric processes.

NEGPLASMA_0903_17
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AMBIPOLOAR TRANSPORT WITH NEGATIVE IONS

e In ambipolar transport, typically used with global models, the
total flux of charged particles leaving the plasma is zero.

— D
_ e
¢e - ne = /ueneEA
/1 ambipolar drift
free diffusion

¢ =— + u'N'E, e Since D, >>D,, the |
A ambmo'ard"ft ambipolar electric field
free diffusion )
D typically accelerates
¢ = —LN; - u1;N;E, positive ions, slows
ambipolar drift electrons (and negative
free diffusion .
lons)

4 34+
->°

lu. . +,u n, + /j.
Zl.: rorere Z / University of lllinois
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AMBIPOLAR TRANSPORT WITH NEGATIVE IONS

e Problem: Since.....

D,>>D,, T,>T, u,>u, then E, >>k—-|/;I
g

which usually results in the unphysical result....

D
g == N; - iN;E, <0

J

e Many work-arounds (all approximations). One example is:

E, = f(N*,N‘,ne,D+,D‘,De)—> ¢j‘>—0>good solution

! neglect ¢; PR
<0
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ELECTRONEGATIVE CORE

Electronegative
core plasma
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e Low pressure plasmas have
“cores” which can be
dominated by negative ions;
surrounded by boundary
regions and sheaths where
negative ions are excluded.

e PIC simulation of plane

parallel O, plasma (10 mTorr)

e Ref: |I. Kouznetsov, Plasma Sources

Sci. Technol. 5, 662 (1996)
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HYBRID PLASMA EQUIPMENT MODEL

MONTE CARLO
CONTINUITY FEATURE
PROFILE
ELECTRON MOMENTUM MODEL
MONTE CARLO
SIMULATION ENERGY
MAGNETO- B(r,z) IAD(r,z)+ IED(r,z)—
STATICS > LONG MEAN
MODULE ELECTRON FREE PATH S(r.z.0) PLASMA
BEAM MODULE (MONTE CARLO)| | S\''% | CHEMISTRY
ELECTRON SPUTTER Es(r.z.4) MSI\NALE/SQ(F;LNO
ol ey ENERGY S(r,z.9) MODULE
EQUATION L
ELECTRO Te(r,z,0) oSS (rz,0)
- = ELECTRO- @(r,z,
MAGNETICS E(r,6,z,9) B?ALJS'\JCSN STATICS | 7| |MESO-SCALF
FREQUENCY u(r,z,0) MODULE
DOMAIN B(r,0,2.) AMBIPOLAR
e NON- s(r,z)
ELECTRO- ’ SURFACE
ELECTRO- C?{LEL'A‘?’F'%EAL STATICS R CHEMISTRY
MAGNETICS MODULE
FDTD SIMPLE
ON-THE-FLY CIRCUIT
FREQUENCY
MODULE (2,
o(r,z) DOMAIN | Z0) o TERNAL
SHEATH CIRCUIT
J(F,Z,.d)) MODULE €@— | MODULE
ID(coils) Es(r,z,0)| N(r,z) V(rf),V(dc)

+—| VPEM: SENSORS, CONTROLLERS, ACTUATORSl—+
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ELECTROMAGNETICS MODULE

e The wave equation is solved in the frequency domain using
sparse matrix techniques:

7 u ot* ot

E(F,1) = E'(F) exp(—i(et + o(F)))

e Conductivities are tensor quantities:

_vﬁlv.E]W.(l VEJ :az(gE)+a(§-E+J)

o’ + B’ oB.+BB, -aB,+BB.
— mjij 1 2 2
o =x0, ~| —aB, +B.B, a” +B, aB. +B,B.
J a . 2 )
o (a +\BU —aB,+BB. -aB +B,B. a’+B
. 2
L= - io+v, qn,
j=0-E aJ.:( ! ), o, = /
q;lm, myv,,
University of Illinois
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ELECTRON ENERGY TRANSPORT

e Continuum:

a(gnekz;j/az =S(T.)-L(T, )—v-@anTe —?(@)-VTQJ+ S s

where S(T,) Power deposition from electric fields

L(T,) = Electron power loss due to collisions

() = Electron flux

k(T,) = Electron thermal conductivity tensor

Sep = Power source source from beam electrons

e Power deposition has contributions from wave and electrostatic heating.

e Kinetic: A Monte Carlo Simulation is used to derive f(e,?,t) including
electron-electron collisions using electromagnetic fields from the EMM
and electrostatic fields from the FKM.

University of Illinois
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PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

e Continuity, momentum and energy equations are solved for each species
(with jump conditions at boundaries).

5N,- :_v’(Nivi)+Si
o't
a(;v;v,.): L VNT)-V (V55 )+ LY (B 15 < B)-v - 7
l | -2 ~ NiNj(‘z'_;j)Vij
Joomitm;
2
a(Nigi)+V-Q-+PV-U.+V°(N-U~5-): Nizquiz E*
Ot m. (v +°)
Nq 2
—2LFE°+ >3 NN Rk (T, —-T))£ > 3N,N,R k,T,
mv, Z m+m ( ) Z

J

e Implicit solution of Poisson’s equation:
V-eVO(t +At) = ( +qu At-Z(qiv-ﬁ.)]

University of Illinois
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DEMONSTRATION OF CONCEPTS: SOLENOID ICP

/Gas inlet

251

201

15[

10F

Gas
Outlet\(z['

0 2 4 6
Radius (cm)
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Solenoid
Winding

Glass
Tube

Demonstrate concepts with low
pressure solenoidal inductively
coupled plasma.

Narrow tube produces high T, and
large negative-ion trapping plasma
potentials.

1-d radial cuts are taken through
maximum in negative ion density

He/O, = 90/10, 10-100 mTorr, 30-
300 sccm, 50 W

Species:

He, He*, He*
O,, O,(*A), O,('%), 0,0,
O, O(*D), O(1S), O, O

University of Illinois
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SOLENOID ICP: He/O, = 90/10, 50 mTorr, 50 W

E(theta) Power Potential T,
[max = 3.4 V/cm] [max = 0.8 W/cm®] [-6t033V] [max=4.5 eV]
25L o5H

e High specific power
deposition in a narrow
tube and high plasma
density produces a
large and uniform T..

20F

15}

e The resulting plasma
potential > 30 V.

0 2 4 6 0 2 4 6 0 2 4 8 0 2 4 6
Radius (cm) Radius (cm) Radius (cm) Radius (cm)
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SOLENOID ICP: He/O, = 90/10, 50 mTorr, 50 W

[e] 10 [M+] 104, 3 [O-] 10,03
[max=2.4 x 10"%cm® [max=6.4x 10"%cm® [max=4.0x 10"%cm?

25|~

20

25[ 25H

e [e] extends to boundaries,
[O-] is restricted to the core
of the plasma.

' e T(O-) does not exceed an eV
| and so is not able to climb

| the plasma potential.

| e The distribution of positive

. ions (dominated by O,"is

| less uniform than electrons

as M* shields O in the center
of the plasma.

0 2 4 & 0 2 4 6 0 2 4 6
Radius (cm) Radius {cm) Radius (cm)
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SOLENOID ICP: He/O, = 90/10, 50 mTorr RADIAL PROPERTIES

Potenti\
6 \

Density (x 10" cm™)

Radius (cm)
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35

30

.= S ® 3regions define the plasma.

20

15

Plasma Potential

e Electronegative core
e Electropositive “halo”
e Sheath

University of Illinois
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SOLENOID ICP: He/O, = 90/10, 50 mTorr vs T(O")

7 __/-'— M"‘\ - 35 7 B -1 35

Potential -30 6 T~ . Potential -30
K= 152 % 125
[&] @ OO g
© 120g © q20 §
% £ = g
> _ _a- _ ©
2 15 % 2 15 2
o 8 & ©
O {10 O -10 &

Radius (cm) Radius (cm)
e T(O-) =T(gas) e T(O-) = 20 x T(gas)

e Artificially constraining T(O-) restricts (or expands) the
region of plasma accessible to negative ions.
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SOLENOID ICP: He/O, = 90/10, 50 W vs PRESSURE

10 milorr 0 100 mTorr
-30
5 = | -145 6l
otentia . -
\ + 140 LM Potential s

~~ 4 M — ~ HI- —
T 1352 % S
G + © o 20 ®
o 0) d30 = o =
2 2 2
e 3 g 2 g
E T e 125 8 ¥ 415 &
z 20 £ £ £
) o} 158 A o

1F 10 15

o . - \
He 5
1 1 | I ——— | R
0 1 2 3 4 4 0
Radius (cm) Radius (cm)

e In spite of increasing plasma potential, voltage drop in
the center of the plasma is not that different, and so
extent of O-is about the same...T(O-) also increases with
decreasing pressure.
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Argon species Oxvgen species COF, species ICP: COMPLEX GEOMETRY

Ar 0; co
Ar(ds) 0.* et AND CHEMISTRY
Ar(4p) o)y CO, _
Ar' 0,('A) COF e Inductively coupled plasmas
o COF for microelectronics
o('D) OF .
o* fabrication often use complex
o) electronegative gas mixtures.
Carbon species F, species CF. species e Etch selectivity IS obtained
C F CF : .
or Ft oF* from regulating thickness of
F CF, polymer layers.
Fa CF,'
F.' CF; e Example case:
CFy
gEef 10 mTorr, 1000 W, 100 sccm
4
Cx F, species
—
CoF3' CFs' C.F7' Ar/C,F4/CO/O,=73/7.3/18/1.8
C2F4 CsFs CsFs
CoF4" CsFs" CaFsg”
C2Fs C;F7 C4Fsg
CoFs' CsF;" C4Fg"
CsFe C4F;
CsFs

University of Illinois
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Height (cm)

Ar/C,F,/CO/O, ICP: ELECTRIC FIELD, POWER, POTENTIAL

16 E-thetﬂ max = 25 V!cm 2'dec Iog)] 16 r Power [max =7-3 chm3 (Z-dec |Og)] 16 B Plasma Potential [max = 23 V]
11 I
12
g 13
sl = =
k= =)
£ T
4 4
TT L I ML
0 1 L L 0 I 1 L
0 4 8 12 0 4 8 12
Radius (cm) Radius (cm) Radius (cm)

e Plasma peaks on axis with “pull” towards peak in power
deposition where positive ions are dominantly formed.

e 10 mTorr, 1000 W, 100 sccm

Ar/C,F4/CO/0,=73/7.3/18/1.8 _ University of lllinois
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Ar/C,F,/CO/O, ICP: [e], [N*], [N]

16 1 3
e [max=1.74 x10  cm™ (2-dec log)]

Height (cm)

16

[ N+ [max=2.5x10" cm™ (2-dec log)]

1 [l

0 1 1 L

16 F 10 .3
N- [max=9.2 x10 " cm™ (2-dec log)]

M [

12

Height (cm)
oo

Radius (cm)

Radius (cm)

Radius (cm)

e [e] near maximum in plasma potential. Negative ions “shield”
positive ions at their low and high values. Catephoresis
displaces negative ions towards boundaries.

e 10 mTorr, 1000 W, 100 sccm

Ar/C,F¢/CO/O,=73/7.3/18/1.8

NEGPLASMA_0903_29
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Ar/C,F,/CO/O, ICP: [Ar*], [F]

16 F
Ar' [max = 1.6 x 10" cm™ (2-dec log)]

11 [l
12 :

e

Height (cm)
(0]

.........

...........

Radius (cm)

Height (cm)

16

[ F- [max=7.1x10" cm™ (2-dec log)]

M [

Radius (cm)

e Negative ions, trapped in the plasma, flow towards peak of
plasma potential where they undergo ion-ion neutralization.
Positive ions largely flow to boundaries.

e 10 mTorr, 1000 W, 100 sccm
Ar/C,Fg/CO/O,=73/7.3/18/1.8

NEGPLASMA_0903 30
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Height (cm)

Ar/C,F4/CO/O, ICP: [C,Fq4]

16 |~

C

,F;- [max = 1.4 x 10"° cm™ (2-dec log)]

1 1 1

Radius (cm)
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e C,Fs-, being heavier and less
mobile, is more susceptible
to being trapped in small
local extrema of the plasma
potential.

e These “trapping zones” are
often the precursor to dust
particle formation.

e 10 mTorr, 1000 W, 100 sccm
Ar/C,Fg/CO/O,=73/7.3/18/1.8

University of Illinois
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MOMENTUM TRANSFER: CATAPHORESIS

e Due to the large Coulomb scattering cross section, there is
efficient momentum transfer between positive and negative

lons.
E(ambipolar)
T = Plasma
......... e _-Potential
| -

©=510T
° | ®(positive ions)

ﬂ ...............................
d(negative ions)

NEGPLASMA_0903_32

e Large flux of positive ions
moving towards boundaries
“pushes” negative ions in the
same direction.

do~ F+INI- \/ V
F:....nt‘gb N GM(V+—V+)

e This is a particularly important
process when negative ions
are charged dust particles
(“ion-drag”)

University of Illinois
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CI” [100=8.4(10)] NO ION DRAG CATAPHORESIS IN ICPs

17.0]
F

DIELECTRIC COILS . . .
WINDOW —— & — [—'9[5—' - e When the flux of positive ions is

| NOZZLE large and electronegativity (N/N*)
small, momentum transfer from N*
to N- can be important.

HEIGHT (cm
o
(&)}

L5
WAFER PUMP SUBSTRATE WINDOW
SUBSTRATE L |PORT 4
0 ' 8 I I | I
. o WITHOUT
Cl” [100=7.0(10)] ION DRAG ' ION DRAG
17.0 , § 6 H
o WITH
& ION DRAG
—_ > 4} 1
5 .
E 85 . &
o Q 2 -
i i
L O
0 1 l K
. | 0 2 4 6 8 10
0 9 18 HEIGHT (cm)
RADIUS (cm)
e Ar/Cl,=50/50, 100 sccm, 500 W, 10 mTorr University of lllinois

Optical and Discharge Physics
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WINDOW

10

SUBSIHATE
10 T | I I
. 500 W
? 8 1
c 750 K
(&
o
- 6 3000 K 1
E 750"(\ 2250K
g 4 |- ~
L
O
2 1500 K —
(&]
0 | | | |
0 2 4 6 8 10
HEIGHT (cm)
10 T | ! T
~ . 1500K 400w
£ 400 W
(]
e 8 500 W 1
-
g 4 - f
(1]
Q 800 W
o 2 |
0 1774 | |
0 2 4 6 8
HEIGHT (cm)

e Ar/Cl,=50/50, 100 sccm, 500 W, 10 mTorr

NEGPLASMA_0903_34

CATAPHORESIS IN ICPs

e The Coulomb momentum
transfer cross section between
N-and N* scales inversely with
energy.

59x10°mA __
o. = cm
: ¥ (K)

e lon drag is therefore sensitive
to temperature and speed of
Interaction; decreasing in
Importance as both increase.

University of Illinois
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CHARGING DAMAGE IN MICROELECTRONICS
FABRICATION
e In microelectronics fabrication,

trenches are etched into silicon
substrates

Positive lons

e |ons arrive with vertical trajectories.
Electrons arrive with broad thermal
trajectories.

e The top of the trench is charged
negative; the bottom positive.

e |on trajectories are perturbed by
electric fields in the trench. Notching

e Plasmainduced damage such as
notching, bowing, microtrenching can
then occur.

e Charge in the bottom of the trench can
be neutralized accelerating negative
lons into the wafer

University of lllinois
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PULSED PLASMAS FOR NEGATIVE ION EXTRACTION

e During cw operation of ICPs,
negative ions cannot escape the
plasma.

E(ambipolar)

e By pulsing the plasma (turn L I Wi
power on-off), during the off .
period (the “afterglow”)...

>

AN

Energy

IJ.") f(g)-Electrons

e The electron temperature ®=°10Te
decreases

e Plasma potential decreas

L . |
e Negative ion formation | ;F.uxreachmgwaus
(usually) increases

e Negative ions can escape...

University of Illinois
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PULSED PLASMAS: Ar/Cl, GAS CHEMISTRIES

e The ideal gas mixture is low
attaching at high T, (power-on) -

and highly attaching at low T, :
(power-off) € ok
e Ar/Cl, mixtures have these 2 0o
properties. S :
g 10
e Dissociative attachment cross 3 ;
section peaks at thermal 5 102
energies. ;
103 IR R ETT! R AR RS
0.01 0.1 1 10 100

Electron Energy (eV)
e Rapid attachment occurs in the

afterglow. * Electron impact cross

sections for Cl,.

Ref: J. Olthoff, Appl. J. Phys. Chem. Ref.
Data, 28, 130 (1999)

University of Illinois
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GLOBAL MODELING: PULSED Ar/Cl, ICPs

5.0 0.10

J0.09
E 40 - 0.08 mg
® Iﬂ 1007
B 30f 10.06 5
o i =
: 0.05 2
S 20l o004 8
c (]
= 1003 5
8 3
2 10} T {002 B

Power 10.01

| | | | | | | | | | | \ | | | | | | |
0.0 —%003 0.00425 0.0045 0.00475 5.0¢500

Time (s)

e Spiking of T, occurs at leading edge of power pulse as electron
density is low producing rapid ionization. Rapid thermalization in
afterglow turns off ionization; increases attachment.

e Ar/Cl,=70/30, 15 mTorr, 2 kHz, 20% duty cycle.

University of Illinois
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GLOBAL MODELING: PULSED Ar/Cl, ICPs

1.53x10"" F
1.03x10™"" F
+10:
~ 5.30x10"° |
=
s
>
2
QO
()
!
\!
3.00x10" . s ‘o
: 0.00425 0.0045 0.00475 0.005
Time (s)

e Rapid attachment in the afterglow produces an ion-ion plasma;
charge balance is met by negative ions, not electrons. Ambipolar
fields dissipate and negative ions can escape.

e Ar/Cl,=70/30, 15 mTorr, 2 kHz, 20% duty cycle.

University of Illinois
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REACTOR AND CONDITIONS

< 25 cm >
Gas Feed
A [ | (1
Upper Electrode Assembly \J
’_T/5-turn spiral coil
Quartz Window
5 . + Simulations
@ o were performed
| Sr' Electrode Extension In a GECRC
> v 16.5 cm—p >
| J
Standard
Lower Electrod & Insulator
\J
v
Pump Port
 Peak input power : 300 W e Inlet gas flow rate : 20 sccm

* Pulse repetition frequency : 10 kHz « Ar, Ar/Cl, = 80/20
e Pressure: 20 mTorr

University of Illinois
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2-D DYNAMICS IN Ar/Cl, :
PLASMA POTENTIAL AND CI- FLUX VECTORS

e As the pulse begins, the peak

plasma potential migrates to

under the colls.

e As the steady state is reached,
the peak plasma potential moves

towards the center.

e C|- flux vectors point towards the
peak plasma potential when
plasma potential is large.

e |t takes about 25 us for the ions
to move from periphery to the

center.

e When the plasma is turned off, Cl-

flux vectors reverse, pointing

towards boundaries.

NEGPLASMA_0903_42

* Ar/Cl, = 80/20, 20 mTorr, 300 W,
10 kHz/50%

Sv I Ml 35V

Animation Slide

University of lllinois
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2-D DYNAMICS IN Ar/Cl, : CI- DENSITY

e During power on, the plasma
potential peaks thereby
"compressing" the [CI]

e At steady state, [Cl] "rebounds"
as the plasma potential

decreases

e Due to Inertia, [Cl] does not
respond to changes in plasma
potential immediately.

e \When the plasma is turned off,
the [Cl] increases due to a
higher rate of dissociative
attachment at low T..

e Later, the plasma potential falls

and [Cl] spreads

NEGPLASMA_0903_41

* Ar/Cl, = 80/20, 20 mTorr, 300 W,

10 kHz/50%

1x 109 cm3

.3x 1011 ecm™3

Animation Slide

University of lllinois
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[e] vs PULSE REPETITION FREQUENCY (PRF)

Power On

10 » 5kHz

. 10 kHz
ap) 20 kHz _ _
58 5 kHz « Non-monotonic behavior
= In peak [e].

o

=6 e Lower PRF results in

%‘ higher rate of dissociation
Sal due to higher T, producing
% less dissociative

O attachment.

02

<@

L

0
100 150 200
Time (us)

* Ar/Cl, = 80/20, 20 mTorr, 300 W,

10 kHz, 50% duty cycle University of Illinois
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[Cl-] vs PULSE REPETITION FREQUENCY (PRF)

2 Power On
' » 5kHz '
10 kHz
20 kHz

—
N

i 7 < [Cl]increases at plasma
20 20 turn on as the Cl-ions move
to the center of plasma; and
(J then decrease as
recombination occurs.

Cl- Density (1 011 Cm'3)

20
« When power is removed,
0.5 10 . . . :
10 [Cl] increases with drop in
o kHz T., and then decreases as
0 | | | Cl- diffuses to walls.
0 50 100 150 200
Time (us)

* Ar/Cl, = 80/20, 20 mTorr, 300 W,

10 kHz, 50% duty cycle University of lllinois
Optical and Discharge Physics
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FLUXES TO SUBSTRATE: DUTY CYCLE

20 Electlron and | | 8 40 Electron and Positive ion flux 10

e Positive ion flux —

P ¥ = v 8 —~

N 16 % o« 30 Ny

e N IE n

(&) lE o (\II

2 5 © ° 5
22 [\-4 Y222 -
© (@] c ~
c X = o X 4 2
(O T q—?q_, c E’
2 £ 42 .2 910t T
2 3 O'g *g 20
o o o o

e
! 0 0 0
0 50 100 150 200 0 50 100 150 200
Time (us) Time (us)
. 0
e Duty cycle : 10% * Duty cycle : 50%

e A finite time is required to transition to ion-ion plasma in the
afterglow with a low plasma potential.

e For a give repetition rate, smaller duty cycles (longer afterglow)
produces longer pulses of Cl- fluxes to the substrate.

. _ University of lllinois
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ELECTRONEGATIVE PLASMAS: ATMOSPHERIC PRESSURE

e The vast majority of atmospheric pressure plasmas having
significant electronegativity are pulsed, transient or filamentary.

e What changes at atmospheric pressure?

e Availability of 3" body increases rates of association
reactions; and is the basis of excimer formation.

Xe"+Cl +M—> XeCI(B) +M

\J
Xe+Cl+hv
e Kinetics are “local” in that transport for negative is not
terribly important.

e Due to higher gas densities, rates of attachment are higher,
making transitions to ion-ion plasmas more rapid.

e “Stationary” negative ions provide local shielding of positive
lons, particularly in afterglow situations.

University of lllinois
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PLASMA SURFACE MODIFICATION OF POLYMERS

“Untreatedi PP e To improve wetting and adhesion of
=N SR polymers atmospheric plasmas are
used to generate gas-phase radicals

to functionalize their surfaces.

e Polypropylene (PP)

48

44- ©

‘at ’ ‘ *.»

- s "y

I..“
.
a " .'

.
e
2

-

[#5)
i

; ’ e [

ST T30A NP
;b." .. d .
1 i SN
Y . .

-

Surface energy (mJ/m2)
(I8
<
0

21, He/O,/N, Plasma

24 T T T T T T T d T
0 2 4 6 8

Treatment duration (min)

e Massines etal. J. Phys. D 31,
3411 (1998).

* M Strobel M University of lllinois
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FUNCTIONALIZATION OF POLYPROPYLENE

e Untreated PP is hydrophobic.

e Increases in surface energy by plasma treatment are
attributed to the functionalization of the surface with
hydrophilic groups.

e Carbonyl (-C=0) e Alcohols (C-OH)
e Peroxy (-C-0-0) e Acids ((OH)C=0)

e The degree of functionalization depends on process
parameters such as gas mix, energy deposition and
relative humidity (RH).

e At sufficiently high energy deposition, erosion of the
polymer occurs.

University of Illinois
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REACTION PATHWAY

A . .
¥
e e N
% X
HUMID-AIR PLASMA e\ ° 0o N N
\LO NO
3
NO
BOUNDARY LAYER OH, Ho0 5
O OH 2
\ « OH x~
X G
| [ I | |
aasanttinedNalies
H
POLYPROPYLENE [ A S ER E N |
R, e
OH
[ A S ER E N |
T T O 0 0 A

University of Illinois
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POLYMER TREATMENT APPARATUS

® TYPICAL PROCESS CONDITIONS:

Web. speed | : 10 - 200 m/min
Residence time :afews @ -------
Energy deposition : 0.1 - 1.0 J cm2 |
Applied voltage  : 10-20 kV at a few 10s kHz I
Gas gap : a few mm :i
[
GROUNDED ! FEED ROLL
ELECTRODE :
[
f PLASMA
_______ POWERED
¢ SHOE
ELECTRODE
I HIGH-VOLTAGE
COLLECTOR POWER SUPPLY
ROLL e

University of Illinois
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COMMERCIAL CORONA PLASMA EQUIPMENT

Tantec Inc.

University of Illinois
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HIGH PRESSURE PLASMA SIMULATION: non-PDPSIM

e 2-d rectilinear or cylindrical unstructured mesh

e Implicit drift-diffusion for charged and neutral species

e Poisson’s equation with volume and surface charge, and
material conduction.

e Circuit model

e Electron energy equation coupled with Boltzmann solution
for electron transport coefficients

e Optically thick radiation transport with photoionization
e Secondary electron emission by impact

e Thermally enhanced electric field emission of electrons
e Surface chemistry.

e Monte Carlo Simulation for secondary electrons

e Compressible Navier Stokes for hydrodynamic flow

e Maxwell Equations in frequency domain

University of Illinois
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DESCRIPTION OF MODEL: CHARGED PARTICLES, POTENTIAL

e Continuity with sources due to electron impact, heavy particle
reactions, surface chemistry, photo-ionization and secondary

emission.
N, _ —V-$+8S,
ot

e Charged particle fluxes by modified Sharfetter-Gummel
expression for drift-diffusion. Assuming collisional coupling
between ions and flow field, v, advective field is included:

aD(n,,,—n. exp(adx _ D,
- _dD(ngmneplad)
i+ (1-exp(adx) Ax

-,
)+vf

Z

e Poisson’s Equation for Electric Potential: —V-&V@ = p, + p

University of Illinois
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DESCRIPTION OF MODEL: CHARGED PARTICLE SOURCES

(N.(7)o,N.(F)exp ——

y-J

e Photoionization: (—f'—fj 3
d’r'

SPi(F) -

J

Electric field and secondary emission:

- (.3 2
SSi =-=V-J, ]E = AT? exp[ ((DW lig., E/EO)l )} jS :Zyij¢j
S J

IRY)
47[‘1"'—1/‘

e VVolumetric Plasma Charge:

agf = -v-(4.4)

Surface and in Material Charges:

R RN RPN

University of Illinois
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DESCRIPTION OF MODEL:
ELECTRON ENERGY, TRANSPORT COEFFICIENTS

e Electron energy equation implicitly integrated using Successive-
Over-Relaxation:

O/)(;;g):]-E_neZNiK‘i—V-(%g{ﬁ—ﬂ,vnj, j:qge

e Electron transport coefficients obtained from 2-term spherical
harmonic expansion of Boltzmann’s Equation.

e lon transport coefficients obtained from tabulated values from the
literature or using conventional approximation techniques.

University of Illinois
Optical and Discharge Physics
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DESCRIPTION OF MODEL:
SECONDARY ELECTRONS-MONTE CARLO SIMULATION

e Transport of energetic secondary electrons is addressed with a
Monte Carlo Simulation.

e MCS is periodically executed to provide electron impact source

functions for continuity equations for charged and neutral
particles.

e Algorithms in MCS account for large dynamic range in mesh
resolution, electric field, and reactant densities.

University of Illinois
Optical and Discharge Physics
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DESCRIPTION OF MODEL: MCS MESHING

e Select regions in which high energy electron transport is expected.

I ,‘}L 2 LT Jff :_(‘,E( ‘_‘:III’-’ IIICN : Lt ,: T ‘.-_\;;:. [ l‘__' ___-JI. |" ,.,
S ATA i ) \ 1 \ e s -
- RIS ST ok ; ™
MCS Region SSashiiiy ] R bbb b
ARk SRR a0 20 I wz o O i
AL . e SR
; ! ; - % s
Fluid Mesh D
T 5 i) ) 0
; i Anode
e: 5
MCS Mesh
.rl,‘ I
mEE \
- "L;a' d- i ~\/
— 1T _ |

e Superimpose Cartesian MCS mesh on unstructured fluid mesh.

e Construct Greens functions for interpolation between meshes.

University of lllinois
Optical and Discharge Physics
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ELECTROMAGNETICS MODEL

e The wave equation is solved in the frequency domain.

52(8E) N 8(0E +J

antenna )

v.|ivE] = :
u ot ot

e All quantities are complex for to account for finite collision
frequencies.

e Solved using method of Successive-over-Relaxation

University of Illinois
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COMPRESSIBLE NAVIER STOKES

e Fluid averaged values of mass density, mass momentum and
thermal energy density obtained in using unsteady algorithms.

Z_'f =—V-(pv )+ (inlets, pumps )
5(0;(;\7) _ V(NkT)_V (p\_}\_})—v '/7+ZqiNiEi
Ape,7)

—r= V(-&VT + pic,T)+ PV-v, =Y RAH,+ Y j,-E

University of Illinois
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DESCRIPTION OF MODEL: NEUTRAL PARTICLE UPDATE

e Transport equations are implicitly solved using Successive-Over-
Relaxation:

N (¢+ At)
Ny

N.(t+4t)=N,(t)-V:|v,-D,N,V +S, +S

e Surface chemistry is addressed using “flux-in/flux-out” boundary
conditions with reactive sticking coefficients

SSZ:Z(V-J].)%.

J

University of Illinois
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ATMOSPHERIC PRESSURE LINEAR CORONA

e Demonstrate concepts of pulsed atmospheric pressure
electronegative plasma with linear corona discharge as used in
polymer functionalization.

e Device is functionally a dielectric barrier discharge. Discharge is
Initiated by field emission from cathode.

0.6 Dielectric -
£
£ 041  Cathode T
A
o /
[
I
0.2F i
KDiElECtI'iG K Anode
0 | | 1 | |
0.00 0.25 0.50 0.75 1.00

Posltlon {cm)

e Dry Air N,/O, = 80/20, -15 kV, 2 mm gap

University of lllinois
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LINEAR CORONA: NEGATIVE ION DYNAMICS

e Dissociative attachment (e + O, > O+ O) has a5 eV
threshold energy. Occurs dominantly in high E/N regions.

e 3-body non-dissociative attachment (e + O, + M —> O, + M)
has no threshold. Occurs with frequency 4 x 108 s'1 (2 ns
lifetime) in atmospheric pressure air.

e O, charge exchanges with O (O, +0O0 > 0O, +0 ,k=15x 10
10 cm3 s1). With maximum O density (4 x 10'® cm-3), lifetime is
0.1 pus (not very important).

e O associates by deattachment with O (O-+0O - O,+e, k=2
X 1019 cm? s1). With maximum O density (4 x 10'® cm-3),
lifetime is 0.1 pus (not very important).

e Negative ions are fairly stable (and immobile) until ion-ion
neutralization [k(effective-2 body)=5 x 10° cm?3 s1, lifetime
10’s ns].

University of lllinois
NEGPLASMA_0903_54 Optical and Discharge Physics



[e] | LINEAR coronA: [e], E/N
[2x10"-2x10"em™
0.20 (2.6 ns) 7
§o1s |
=
3 0.10
T . B -
e Electron density bridges
0.05 I gap sustained by
Dlelectiicjonization produced by
0.00 ' . . Anode
0.00 0.10 0.20 0.30 0.40 charge enhanced E/N.
Position (cm)

e Electrons spread on

E/N (26 . .
e 20 By dielectric web as charge

accumulates.

0.95 athode

0.20

o
Y
n

Height (cm)
e
=

e N,/O, =80/20, -15 kV,
100 ns (log-time)

0.05 7
J Dielectric  WN BN IR IR vax
0.00 ' ' +___ Anode — —
0.00 0.10 0.20 0.30 0.40 University of lllinois
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2,10

0,20 0,30 0.40
Fositicn (cm)

LINEAR CORONA: [e], E/N

e Electron density bridges
gap sustained by
lonization produced by
charge enhanced E/N.

e Electrons spread on
dielectric web as charge
accumulates.

e N,/O, =80/20, -15 kV,
100 ns (log-time)
min TN B T max

Animation Slide
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LINEAR CORONA!
POTENTIAL, CHARGE

e Charge density sustains
E/N at front of avalanche.

e Electric potential is
shielded from the gap by
charging of the dielectric
web.

e N,/O, =80/20, -15 kV,
100 ns (log-time)

N T R A X

University of lllinois
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L athade LINEAR CORONA.

POTENTIAL, CHARGE

Paotential [-15 kY -G

Height {=m])

e Charge density sustains
Dielectric E/N at front of avalanche.

0.00 Anade
0.00 0.10 Pﬂsiﬁfr?mmj 0.30 v o Electric potential is
025 [ Cathode — , | - shielded from the gap by
' Chamge Density i i i
/ AT AT charging of the dielectric
0.20F - web.
E 015 7
= e N,/O, =80/20, -15 kV,
ED.H}' i | 100 ns (log-time)
wiN - T I, A x
0.05F ] Animation Slide
Dielectric
0.00 ' ' ' Anade ] University of lllinois
0.00 0.10 0.20 0.30 VA Optical and Discharge Physics
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Fositicn (cm)

LINEAR CORONA: TOTAL
POSITIVE ION DENSITY

e Positive ions: N,*, N,*, N*,
O™, O,*.

e Heavy ions at
atmospheric pressure are
nearly immobile during
short duration of pulse.

e Loss is dominantly by
local processes (e-ion
recombination, ion-ion
neutralization).

e N,/O, =80/20, -15 kV,
100 ns (log-time)
MIN B E EEvax

Animation Slide
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LINEAR CORONA: NEGATIVE
IONS O, O,

e Rapid conversion of e to
O, by 3-body processes
produces an ion-ion
plasma in afterglow.

e Nearly immobile negative
ions (u=2 cm?/V-s, V4,ix =
10° cm/s) are largely
consumed where formed
by ion-ion neutralization.

e N,/O, =80/20, -15 kV,
100 ns (log-time)

min_ OB U R A
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LINEAR CORONA: NEGATIVE
IONS O, O,

e Rapid conversion of e to
O, by 3-body processes
produces an ion-ion
plasma in afterglow.

e Nearly immobile negative
ions (u=2 cm?/V-s, V4,ix =
10° cm/s) are largely
consumed where formed
by ion-ion neutralization.

e N,/O, =80/20, -15 kV,
100 ns (log-time)
min TN B T max

Animation Slide
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CONCLUDING REMARKS

e As you develop you models for electronegative plasmas (or any
type plasma)...

e Construct your models as GENERALLY as possible. Never,
never, never hardwire any species or chemical reaction
mechanism in your code.

e Read all options, species, mechanisms as input from WELL
MAINTAINED AND DOCUMENTED DATABASES.

e Develop STANDARDS for input, output, use of databases and
visualization which ALL of your codes obey.

e DOCUMENT, DOCUMENT, DOCUMENT!!! Every input-variable,
every output-parameter, every process. Have “official” versions.

e ARCHIVE, ARCHIVE, ARCHIVE!!!l Example cases, documentation,
best practice, official version....A computer knowledgeable
person should be able to run cases in a day.

University of lllinois
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