MODELING ELECTRONEGATIVE PROCESSES IN PLASMAS*

Prof. Mark J. Kushner University of Illinois 1406 W. Green St. Urbana, IL 61801 USA mjk@uiuc.edu <u>http://uigelz.ece.uiuc.edu</u>

September 2003

* Work supported by the National Science Foundation Semiconductor Research Corp and 3M Inc,

AGENDA

- Physics of electronegative plasmas...What is different?
- Modeling strategies for electronegative plasmas.
- Examples from low pressure systems
- Examples from high pressure systems
- Concluding remarks

MODELING ELECTRONEGATIVE PLASMAS

- This could be a very short talk.....
- There is nothing fundamentally different about modeling electronegative plasmas from electropositive plasmas.
- You just need to account for "all the physics".....
- The better your awareness of the physics, the more accurate your model will be.
- However.....

MODELING ELECTRONEGATIVE PLASMAS

- Modeling electronegative plasmas is all about *plasma chemistry*.
- To some degree, all electropositive plasmas look alike.
- To model electronegative plasmas well, one must address the unique molecular physics of your feedstock gases, their fragments and products.
- This is what we also call physical chemistry; the physics of bonds in molecules.
- The better your awareness of the physical chemistry, the more accurate your model will be.
- Let's begin with how the bonds in molecules determine your negative ion plasma chemistry.

• The majority of negative ions formed in low pressure plasmas are by dissociative excitation of molecular species.

• The molecule is excited to either a real or virtual state which has a curve crossing with a dissociative state. The fragments may be produce with significant kinetic energy.

THERMAL DISSOCIATIVE ATTACHMENT

NEGPLASMA 0903 05

- If the dissociative curve cuts through the bottom of the bound state potential well (r=r_o), electrons of "zero" energy can initiate the dissociative attachment.
- Example: $e + Cl_2 \rightarrow Cl + Cl$ -

Ref: Christophorou, J. Phys. Chem. Ref. Data 28, 131 (1999)

INELASTIC DISSOCIATIVE ATTACHMENT

 Dissociative curve intersects potential well at r > r_o. Conservation of momentum (∆r=0) results in a finite threshold energy.

3-BODY NON-DISSOCIATIVE ATTACHMENT

- When the attachment is non-dissociative (e.g., $e + O_2 \rightarrow O_2$ -) a 3rd body is usually required to dissipate the momentum of the incoming electron.
- The actual attachment process is a series of 1st and 2nd order events.

3-BODY ATTACHMENT: EFFECTIVE 2-BODY RATE

• The effective two body rate coefficient demonstrates the low pressure regime where stablization is slow; and the high pressure limit where autodetachment is not important.

$$\frac{d\left[\left(O_{2}^{-}\right)^{*}\right]}{dt} = \left[e\right]\left[O_{2}\right]k_{1} - \left[\left(O_{2}^{-}\right)^{*}\right]\left(\frac{1}{\tau} + Mk_{2}\right) \approx 0$$

$$\left[\left(O_{2}^{-}\right)^{*}\right] \approx \frac{\left[e\right]\left[O_{2}\right]k_{1}}{\left(\frac{1}{\tau} + Mk_{2}\right)}$$

$$\frac{d\left[O_{2}^{-}\right]}{dt} = \left[\left(O_{2}^{-}\right)^{*}\right]Mk_{2} \approx \frac{\left[e\right]\left[O_{2}\right]k_{1}Mk_{2}}{\left(\frac{1}{\tau} + Mk_{2}\right)}\left[\left(O_{2}^{-}\right)^{*}\right] \approx \left[e\right]\left[O_{2}\right]k_{1}Mk_{2}$$

$$k' = \frac{k_{1}}{\left(1 + \frac{1}{Mk_{2}\tau}\right)}$$

3-BODY ATTACHMENT: EFFECTIVE 2-BODY RATE

- O₂: $k_1 = 3 \times 10^{-11} \text{ cm}^3 \text{s}^{-1}$, $\tau = 0.1 \text{ ns}$, $k_2 \approx 5 \times 10^{-10} \text{ cm}^3 \text{s}^{-1}$ High pressure limit reached at 4 atm
- Almost always acceptable to ^{s)} use 3-body rate coefficient

$$e + O_2 + M \xrightarrow{k_3} O_2^- + M$$
$$k_3 \approx k_1 k_2 \tau \approx 2.3 \times 10^{-30} \, \mathrm{cm}^{-6} \, \mathrm{s}^{-1}$$

- For $(C_4F_8)^*$, $\tau = 1 \mu s$, and the high pressure limit is at 0.3 Torr.
 - Itikawa, J. Phys. Chem. Ref. Data 18, 23 (1989)

Pressure-

- I. Sauers, J. Chem. Phys. 71, 3016 (1979).
- R. L. Woodin, J. Chem. Phys. 72, 4223 (1980).

University of Illinois Optical and Discharge Physics

NEGPLASMA_0903_09

T(gas) DEPENDENCE OF DISSOCIATIVE ATTACHMENT

 Many rate coefficients for dissociative attachment have a strong dependence on gas temperature due to vibrational-rotational excitation of molecule.

T(gas) DEPENDENCE OF DISSOCIATIVE ATTACHMENT

• Although not usually a large source of negative ions, ion-pair formation typically occurs at higher electron energies.

• Example: $e + CF_4 \rightarrow CF_3^+ + F_7 + e$

LOSS PROCESSES: ION-ION NEUTRALIZATION

 Negative ions are consumed in the volume of plasmas primarily by ion-ion neutralization

 $A-+B^+ \rightarrow A+B$ (or A^*+B or $A+B^*$)

- Requirement: (Ionization Potential)_B > (Electron Affinity)_A
- Since the Coulomb forces between are long range; atomic structure of the core is not terribly important.

- Rate coefficients generally depend on IP, EA, reduced mass and scale as T^{-0.5}. Typical values 10⁻⁷ cm ³s ⁻¹ (300K)
- J. T. Moseley, Case Studies in Atomic Physics 5, p. 1 (1975)

LOSS PROCESSES: ASSOCIATIVE DETACHMENT

 Association of small radicals to form parent molecules can be accelerated by detachment as the liberated electron carries off excess momentum

$$O^{-} + O \rightarrow O_2 + e$$
, $k = 2 \times 10^{-10} \text{ cm}^3 \text{s}^{-1}$

LOSS PROCESSES: CHARGE EXCHANGE

 Just as positive ions undergo charge exchange if energetically allowed (A⁺ + B → A + B⁺, IP(A) > IP(B)), negative ions undergo charge exchange.

University of Illinois Optical and Discharge Physics

NEGPLASMA_0903_15

SECRET FOR MODELING ELECTRONEGATIVE PLASMAS: DO NOTHING SPECIAL

 Most approximation methods for electronegative plasmas breakdown somewhere along the way and require fixes. Including all the physics really helps....For example:

$$\frac{d\mathbf{n}_{e}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{1} - \mathbf{n}_{e}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{2} - \nabla \cdot \vec{\phi}_{e}$$

$$\frac{d\mathbf{O}_{2}^{+}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{1} - \mathbf{n}_{e}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \mathbf{O}_{2}^{-}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \nabla \cdot \vec{\phi}_{o_{2}^{+}}$$

$$\frac{d\mathbf{O}_{2}^{-}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{1} - \mathbf{n}_{e}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \mathbf{O}_{2}^{-}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \nabla \cdot \vec{\phi}_{o_{2}^{+}}$$

$$\frac{d\mathbf{O}_{2}^{-}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{2} - \mathbf{O}_{2}^{-}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \nabla \cdot \vec{\phi}_{o_{2}^{-}}$$

$$\frac{d\mathbf{O}_{2}^{-}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{2} - \mathbf{O}_{2}^{-}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \nabla \cdot \vec{\phi}_{o_{2}^{-}}$$

$$\frac{d\mathbf{O}_{2}^{-}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{2} - \mathbf{O}_{2}^{-}\mathbf{O}_{2}^{+}\mathbf{k}_{2} - \nabla \cdot \vec{\phi}_{o_{2}^{-}}$$

$$\frac{d\mathbf{O}_{2}^{-}}{dt} = \mathbf{n}_{e}\mathbf{O}_{2}\mathbf{k}_{2} - \mathbf{O}_{1}^{-}\mathbf{\nabla}\mathbf{N}_{1}$$

$$\vec{\phi}_{i} = \mathbf{q}_{i}\boldsymbol{\mu}_{i}\mathbf{N}_{i}\vec{\mathbf{E}} - \mathbf{D}_{i}\nabla\mathbf{N}_{i}$$

$$\nabla \cdot \vec{\mathbf{E}} = \frac{\mathbf{q}}{\varepsilon_{o}}\left(\mathbf{O}_{2}^{+} - \mathbf{O}_{2}^{-} - \mathbf{n}_{e}\right)$$

University of Illinois Optical and Discharge Physics

NEGPLASMA_0903_16

TRANSPORT OF NEGATIVE IONS

- In principle, negative ions are simply heavy, cold electrons (T₁ << T_e) and obey the same kinetic and transport laws.
- In practice, N- cannot climb the plasma potential barrier created by ambipolar fields and so are trapped in the plasma.

For conventional plasmas, N- are almost exclusively lost by volumetric processes.

• In ambipolar transport, typically used with global models, the total flux of charged particles leaving the plasma is zero.

$$\vec{\phi}_{e} = -\frac{D_{e}}{\Lambda} n_{e} - \mu_{e} n_{e} E_{A}$$

$$\vec{\phi}_{i}^{+} = -\frac{D_{i}^{+}}{\Lambda} N_{i}^{+} + \mu_{i}^{+} N_{i}^{+} E_{A}$$

$$\vec{\phi}_{i}^{-} = -\frac{D_{j}^{-}}{\Lambda} N_{j}^{-} - \mu_{j}^{-} N_{j}^{-} E_{A}$$

$$\vec{\phi}_{j}^{-} = -\frac{D_{j}^{-}}{\Lambda} N_{j}^{-} - \mu_{j}^{-} N_{j}^{-} E_{A}$$

$$mbipolar drift$$

$$\sum_{i} \vec{\phi}_{i}^{+} = \sum_{j} \vec{\phi}_{j}^{-} + \vec{\phi}_{e}$$

$$E_{A} = \frac{-\sum_{i} \frac{D_{i}^{+}}{\Lambda} N_{i}^{+} + \frac{D_{e}}{\Lambda} n_{e} + \sum_{j} \frac{D_{j}^{-}}{\Lambda} N_{j}^{-}}{\sum_{i} \mu_{i}^{+} N_{i}^{+} + \mu_{e} n_{e} + \sum_{j} \mu_{j}^{-} N_{j}^{-}}$$

 Since D_e >> D_I, the ambipolar electric field typically accelerates positive ions, slows electrons (and negative ions)

> University of Illinois Optical and Discharge Physics

NEGPLASMA_0903_18

• Problem: Since.....

$$\mathbf{D}_{\mathbf{e}} >> \mathbf{D}_{\mathbf{I}}, \quad \mathbf{T}_{\mathbf{e}} >> \mathbf{T}_{\mathbf{I}}, \quad \mu_{\mathbf{e}} >> \mu_{\mathbf{I}}, \quad \text{then } \mathbf{E}_{\mathbf{A}} >> \frac{\mathbf{k}\mathbf{T}_{\mathbf{I}}}{\mathbf{q}\Lambda}$$

which usually results in the unphysical result....

$$\vec{\phi}_{j}^{-} = \frac{\boldsymbol{D}_{j}}{\Lambda} \boldsymbol{N}_{j}^{-} - \boldsymbol{\mu}_{j}^{-} \boldsymbol{N}_{j}^{-} \vec{\boldsymbol{E}}_{\boldsymbol{A}} < 0$$

• Many work-arounds (all approximations). One example is:

$$\mathbf{E}_{A} = f(\mathbf{N}^{+}, \mathbf{N}^{-}, \mathbf{n}_{e}, \mathbf{D}^{+}, \mathbf{D}^{-}, \mathbf{D}_{e}) \rightarrow \phi_{j}^{-} \xrightarrow{> \mathbf{0}} \mathbf{good solution}$$

$$\mathbf{M}_{i} = \mathbf{neglect} \ \phi_{j}^{-} \quad \mathbf{neglect} \ \phi_{j}^{-} \quad \mathbf{neglect} \ \phi_{j}^{-} \quad \mathbf{neglect} \ \phi_{j}^{-} \quad \mathbf{neglect} \ \mathbf$$

ELECTRONEGATIVE CORE

- Low pressure plasmas have "cores" which can be dominated by negative ions; surrounded by boundary regions and sheaths where negative ions are excluded.
- PIC simulation of plane parallel O₂ plasma (10 mTorr)
- Ref: I. Kouznetsov, Plasma Sources Sci. Technol. 5, 662 (1996)

HYBRID PLASMA EQUIPMENT MODEL

 The wave equation is solved in the frequency domain using sparse matrix techniques:

$$-\nabla \left(\frac{1}{\mu} \nabla \cdot \overline{E}\right) + \nabla \cdot \left(\frac{1}{\mu} \nabla \overline{E}\right) = \frac{\partial^2 \left(\varepsilon \overline{E}\right)}{\partial t^2} + \frac{\partial \left(\overline{\overline{\sigma}} \cdot \overline{E} + \overline{J}\right)}{\partial t}$$
$$\vec{E}(\vec{r},t) = \vec{E}'(\vec{r}) \exp(-i(\omega t + \varphi(\vec{r})))$$

• Conductivities are tensor quantities:

$$\overline{\overline{\sigma}} = \sum_{j} \sigma_{j} \frac{m_{j} v_{jm}}{q_{j} \alpha_{j}} \frac{1}{\left(\alpha^{2} + \left|\vec{B}\right|^{2}\right)} \begin{pmatrix} \alpha^{2} + B_{r}^{2} & \alpha B_{z} + B_{r} B_{\theta} & -\alpha B_{\theta} + B_{r} B_{z} \\ -\alpha B_{z} + B_{r} B_{\theta} & \alpha^{2} + B_{\theta}^{2} & \alpha B_{r} + B_{\theta} B_{z} \\ -\alpha B_{\theta} + B_{r} B_{z} & -\alpha B_{r} + B_{\theta} B_{z} & \alpha^{2} + B_{z}^{2} \end{pmatrix}$$
$$\overline{j} = \overline{\overline{\sigma}} \cdot \vec{E} \qquad \alpha_{j} = \frac{\left(i\omega + v_{jm}\right)}{q_{j} / m_{j}}, \quad \sigma_{j} = \frac{q^{2} n_{j}}{m_{j} v_{jm}}$$

University of Illinois Optical and Discharge Physics

AVS01_03

ELECTRON ENERGY TRANSPORT

• Continuum:

$$\partial \left(\frac{3}{2}n_e kT_e\right) / \partial t = S(T_e) - L(T_e) - \nabla \cdot \left(\frac{5}{2}\Phi kT_e - \overline{\overline{\kappa}}(T_e) \cdot \nabla T_e\right) + S_{EB}$$

where	S(T _e)	=	Power deposition from electric fields
	L(T _e)	=	Electron power loss due to collisions
	Φ	=	Electron flux
	к (Т _е)	=	Electron thermal conductivity tensor
	S _{EB}	=	Power source source from beam electrons

- Power deposition has contributions from wave and electrostatic heating.
- <u>Kinetic</u>: A Monte Carlo Simulation is used to derive $f(\varepsilon, \vec{r}, t)$ including electron-electron collisions using electromagnetic fields from the EMM and electrostatic fields from the FKM.

PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species (with jump conditions at boundaries).

$$\begin{aligned} \frac{\partial N_i}{\partial t} &= -\nabla \cdot (N_i \vec{v}_i) + S_i \\ \frac{\partial (N_i \vec{v}_i)}{\partial t} &= \frac{1}{m_i} \nabla (k N_i T_i) - \nabla \cdot (N_i \vec{v}_i \vec{v}_i) + \frac{q_i N_i}{m_i} (\vec{E} + \vec{v}_i \times \vec{B}) - \nabla \cdot \overline{\mu}_i \\ &- \sum_j \frac{m_j}{m_i + m_j} N_i N_j (\vec{v}_i - \vec{v}_j) v_{ij} \\ \frac{\partial (N_i \varepsilon_i)}{\partial t} + \nabla \cdot Q_i + P_i \nabla \cdot U_i + \nabla \cdot (N_i U_i \varepsilon_i) = \frac{N_i q_i^2 v_i}{m_i (v_i^2 + \omega^2)} E^2 \\ &+ \frac{N_i q_i^2}{m_i v_i} E_s^2 + \sum_j 3 \frac{m_{ij}}{m_i + m_j} N_i N_j R_{ij} k_B (T_j - T_i) \pm \sum_j 3 N_i N_j R_{ij} k_B T_j \end{aligned}$$

• Implicit solution of Poisson's equation:

$$\nabla \cdot \varepsilon \nabla \Phi (t + \Delta t) = - \left(\rho_s + \sum_i q_i N_i - \Delta t \cdot \sum_i (q_i \nabla \cdot \vec{\phi}_i) \right)$$

DEMONSTRATION OF CONCEPTS: SOLENOID ICP

- Demonstrate concepts with low pressure solenoidal inductively coupled plasma.
- Narrow tube produces high T_e and large negative-ion trapping plasma potentials.
- 1-d radial cuts are taken through maximum in negative ion density
- He/O₂ = 90/10, 10-100 mTorr, 30-300 sccm, 50 W
- Species:

He, He^{*}, He⁺ O₂, O₂(¹ Δ), O₂(¹ Σ), O₂⁺,O₂⁻, O, O(¹D), O(¹S), O⁺, O⁻

SOLENOID ICP: He/O₂ = 90/10, 50 mTorr, 50 W

- High specific power deposition in a narrow tube and high plasma density produces a large and uniform T_e.
- The resulting plasma potential > 30 V.

SOLENOID ICP: He/O₂ = 90/10, 50 mTorr, 50 W

- [e] extends to boundaries,
 [O-] is restricted to the core of the plasma.
- T(O-) does not exceed an eV and so is not able to climb the plasma potential.
- The distribution of positive ions (dominated by O₂⁺⁾ is less uniform than electrons as M⁺ shields O⁻ in the center of the plasma.

- 3 regions define the plasma.
 - Electronegative core
 - Electropositive "halo"
 - Sheath

• Artificially constraining T(O-) restricts (or expands) the region of plasma accessible to negative ions.

University of Illinois Optical and Discharge Physics

SOLENOID ICP: $He/O_2 = 90/10$, 50 W vs PRESSURE

 In spite of increasing plasma potential, voltage drop in the center of the plasma is not that different, and so extent of O- is about the same...T(O-) also increases with decreasing pressure.

<u>Argon species</u> Ar Ar(4s) Ar(4p) <mark>Ar⁺</mark>	Oxygen species O_2 O_2^+ O_2^- $O_2(^1\Delta)$ O $O(^1D)$ O^+ O^-	COF _x <u>species</u> CO CO ⁺ CO ₂ COF COF ₂ OF	ICP: COMPLEX GEOMETRY AND CHEMISTRY Inductively coupled plasmas for microelectronics fabrication often use complex electronegative gas mixtures.
<u>Carbon species</u> C C⁺	F× <u>species</u> F F ⁺ F ⁻ F ₂ F ₂ ⁺	CF CF ⁺ CF₂ CF₂ ⁺	Etch selectivity is obtained from regulating thickness of polymer layers. Example case: 10 mTorr, 1000 W, 100 sccm
$\frac{C_{x} F_{y} \text{ species}}{C_{2}F_{3}}$ $C_{2}F_{4}$ $C_{2}F_{4}$ $C_{2}F_{5}$ $C_{2}F_{5}$ $C_{2}F_{5}$ $C_{2}F_{5}$ $C_{3}F_{5}$	$C_{3}F_{5}^{+}$ $C_{3}F_{6}^{+}$ $C_{3}F_{7}^{+}$ $C_{3}F_{7}^{+}$ $C_{4}F_{7}^{+}$	$C_4F_7^+$ $C_4F_8^-$ $C_4F_8^-$ $C_4F_8^-^*$ $C_4F_8^+$	Ar/C ₄ F ₈ /CO/O ₂ =73/7.3/18/1.8

- Plasma peaks on axis with "pull" towards peak in power deposition where positive ions are dominantly formed.
 - 10 mTorr, 1000 W, 100 sccm Ar/C₄F₈/CO/O₂=73/7.3/18/1.8

- [e] near maximum in plasma potential. Negative ions "shield" positive ions at their low and high values. Catephoresis displaces negative ions towards boundaries.
 - 10 mTorr, 1000 W, 100 sccm Ar/C₄F₈/CO/O₂=73/7.3/18/1.8

Ar/C₄F₈/CO/O₂ ICP: [Ar⁺], [F⁻]

- Negative ions, trapped in the plasma, flow towards peak of plasma potential where they undergo ion-ion neutralization.
 Positive ions largely flow to boundaries.
 - 10 mTorr, 1000 W, 100 sccm Ar/C₄F₈/CO/O₂=73/7.3/18/1.8

- C₄F₈-, being heavier and less mobile, is more susceptible to being trapped in small local extrema of the plasma potential.
- These "trapping zones" are often the precursor to dust particle formation.
 - 10 mTorr, 1000 W, 100 sccm Ar/C₄F₈/CO/O₂=73/7.3/18/1.8

University of Illinois Optical and Discharge Physics
MOMENTUM TRANSFER: CATAPHORESIS

• Due to the large Coulomb scattering cross section, there is efficient momentum transfer between positive and negative ions.

• Large flux of positive ions moving towards boundaries "pushes" negative ions in the same direction.

$$\frac{\mathrm{d}\vec{\varPhi}^{-}}{\mathrm{d}t} = \dots + \left|\vec{\varPhi}^{+}\right| \mathbf{N}^{-} \boldsymbol{\sigma}_{\mathrm{M}} \left(\vec{v}_{+} - \vec{v}_{+}\right)$$

 This is a particularly important process when negative ions are charged dust particles ("ion-drag")

• Ar/Cl₂=50/50, 100 sccm, 500 W, 10 mTorr

University of Illinois Optical and Discharge Physics

CATAPHORESIS IN ICPs

 The Coulomb momentum transfer cross section between N⁻ and N⁺ scales inversely with energy.

$$\sigma_{ij} = \frac{5.9 \times 10^{-6} \ln \Lambda}{\Psi_{ij}(K)} \text{ cm}^{-2},$$
$$\frac{3}{2} \text{ k} \Psi_{ij} = \frac{3}{2} \text{ k} \text{ T}_{\text{I}} + \frac{1}{2} \eta_{ij} \left| \vec{\text{v}}_{\text{i}} - \vec{\text{v}}_{\text{j}} \right|$$

- Ion drag is therefore sensitive to temperature and speed of interaction; decreasing in importance as both increase.
- Ar/Cl₂=50/50, 100 sccm, 500 W, 10 mTorr

University of Illinois Optical and Discharge Physics

NEGPLASMA_0903_34

CHARGING DAMAGE IN MICROELECTRONICS FABRICATION

- In microelectronics fabrication, trenches are etched into silicon substrates
- lons arrive with vertical trajectories. Electrons arrive with broad thermal trajectories.
- The top of the trench is charged negative; the bottom positive.
- Ion trajectories are perturbed by electric fields in the trench.
- Plasma induced damage such as notching, bowing, microtrenching can then occur.
- Charge in the bottom of the trench can be neutralized accelerating negative ions into the wafer

PULSED PLASMAS FOR NEGATIVE ION EXTRACTION

- During cw operation of ICPs, negative ions cannot escape the plasma.
- By pulsing the plasma (turn power on-off), during the off period (the "afterglow")...
 - The electron temperature ^Φ = decreases
 - Plasma potential decreas
 - Negative ion formation (usually) increases
 - Negative ions can escape...

PULSED PLASMAS: Ar/Cl₂ GAS CHEMISTRIES

- The ideal gas mixture is low attaching at high T_e (power-on) and highly attaching at low T_e (power-off)
- Ar/Cl₂ mixtures have these properties.
- Dissociative attachment cross section peaks at thermal energies.

 $e + Cl_2 \rightarrow Cl + Cl -$

• Rapid attachment occurs in the afterglow.

Ref: J. Olthoff, Appl. J. Phys. Chem. Ref. Data, 28, 130 (1999)

• Electron impact cross sections for Cl₂.

GLOBAL MODELING: PULSED Ar/Cl₂ ICPs

- Spiking of T_e occurs at leading edge of power pulse as electron density is low producing rapid ionization. Rapid thermalization in afterglow turns off ionization; increases attachment.
- Ar/Cl₂ = 70/30, 15 mTorr, 2 kHz, 20% duty cycle.

- Rapid attachment in the afterglow produces an ion-ion plasma; charge balance is met by negative ions, not electrons. Ambipolar fields dissipate and negative ions can escape.
- Ar/Cl₂ = 70/30, 15 mTorr, 2 kHz, 20% duty cycle.

REACTOR AND CONDITIONS

Optical and Discharge Physics

2-D DYNAMICS IN Ar/Cl₂ : PLASMA POTENTIAL AND CI⁻ FLUX VECTORS

- As the pulse begins, the peak plasma potential migrates to under the coils.
- As the steady state is reached, the peak plasma potential moves towards the center.
- CI⁻ flux vectors point towards the peak plasma potential when plasma potential is large.
- It takes about 25 μs for the ions to move from periphery to the center.
- When the plasma is turned off, Cl⁻ flux vectors reverse, pointing towards boundaries.

• Ar/Cl₂ = 80/20, 20 mTorr, 300 W, 10 kHz/50%

Animation Slide

2-D DYNAMICS IN Ar/Cl₂ : CI⁻ DENSITY

- During power on, the plasma potential peaks thereby "compressing" the [Cl⁻]
- At steady state, [CI⁻] "rebounds" as the plasma potential decreases
- Due to inertia, [CI⁻] does not respond to changes in plasma potential immediately.
- When the plasma is turned off, the [CI⁻] increases due to a higher rate of dissociative attachment at low T_e.
- Later, the plasma potential falls ^{1 x 10⁹ cm and [CI⁻] spreads}

• Ar/Cl₂ = 80/20, 20 mTorr, 300 W, 10 kHz/50%

University of Illinois Optical and Discharge Physics

NEGPLASMA_0903_41

[e] vs PULSE REPETITION FREQUENCY (PRF)

- Non-monotonic behavior in peak [e].
- Lower PRF results in higher rate of dissociation due to higher T_e producing less dissociative attachment.

[CI-] vs PULSE REPETITION FREQUENCY (PRF)

 Ar/Cl₂ = 80/20, 20 mTorr, 300 W, 10 kHz, 50% duty cycle

- [CI⁻] increases at plasma turn on as the CI⁻ ions move to the center of plasma; and then decrease as recombination occurs.
- When power is removed, [CI⁻] increases with drop in T_e, and then decreases as CI- diffuses to walls.

FLUXES TO SUBSTRATE: DUTY CYCLE

- A finite time is required to transition to ion-ion plasma in the afterglow with a low plasma potential.
- For a give repetition rate, smaller duty cycles (longer afterglow) produces longer pulses of CI- fluxes to the substrate.

• Ar/Cl₂ = 80/20, 20 mTorr, 300 W, 10 kHz

ELECTRONEGATIVE PLASMAS: ATMOSPHERIC PRESSURE

- The vast majority of atmospheric pressure plasmas having significant electronegativity are pulsed, transient or filamentary.
- What changes at atmospheric pressure?
 - Availability of 3rd body increases rates of association reactions; and is the basis of excimer formation.

$$Xe^+ + Cl^- + M \rightarrow XeCl(B) + M$$

 \downarrow
 $Xe + Cl + h\nu$

- Kinetics are "local" in that transport for negative is not terribly important.
- Due to higher gas densities, rates of attachment are higher, making transitions to ion-ion plasmas more rapid.
- "Stationary" negative ions provide local shielding of positive ions, particularly in afterglow situations.

PLASMA SURFACE MODIFICATION OF POLYMERS

M. Strobel, 3M

 To improve wetting and adhesion of polymers atmospheric plasmas are used to generate gas-phase radicals to functionalize their surfaces.

University of Illinois Optical and Discharge Physics

UTA_1102_08

FUNCTIONALIZATION OF POLYPROPYLENE

- Untreated PP is hydrophobic.
- Increases in surface energy by plasma treatment are attributed to the functionalization of the surface with hydrophilic groups.
 - Carbonyl (-C=O) Alcohols (C-OH)
 - Peroxy (-C-O-O)
 Acids ((OH)C=O)
- The degree of functionalization depends on process parameters such as gas mix, energy deposition and relative humidity (RH).
- At sufficiently high energy deposition, erosion of the polymer occurs.

University of Illinois Optical and Discharge Physics

REACTION PATHWAY

POLYMER TREATMENT APPARATUS

COMMERCIAL CORONA PLASMA EQUIPMENT

HIGH PRESSURE PLASMA SIMULATION: non-PDPSIM

- 2-d rectilinear or cylindrical unstructured mesh
- Implicit drift-diffusion for charged and neutral species
- Poisson's equation with volume and surface charge, and material conduction.
- Circuit model
- Electron energy equation coupled with Boltzmann solution for electron transport coefficients
- Optically thick radiation transport with photoionization
- Secondary electron emission by impact
- Thermally enhanced electric field emission of electrons
- Surface chemistry.
- Monte Carlo Simulation for secondary electrons
- Compressible Navier Stokes for hydrodynamic flow
- Maxwell Equations in frequency domain

 Continuity with sources due to electron impact, heavy particle reactions, surface chemistry, photo-ionization and secondary emission.

$$\frac{\partial N_i}{\partial t} = -\vec{\nabla} \cdot \vec{\phi} + S_i$$

 Charged particle fluxes by modified Sharfetter-Gummel expression for drift-diffusion. Assuming collisional coupling between ions and flow field, v_f, advective field is included:

$$\vec{\varphi}_{i+\frac{1}{2}} = \frac{\alpha \overline{D}(n_{i+1} - n_i \exp(\alpha \Delta x))}{(1 - \exp(\alpha \Delta x))}, \ \alpha = -q \overline{\mu}(\frac{\Phi_{i+1} - \Phi_i}{\Delta x}) + v_f$$

• Poisson's Equation for Electric Potential: $-\nabla \cdot \mathcal{E} \nabla \Phi = \rho_V + \rho_S$

• Photoionization:

n:

$$S_{Pi}(\vec{r}) = \int \frac{N_i(\vec{r})\sigma_{ij}N_j(\vec{r}')\exp\left(\frac{-\left|\vec{r}'-\vec{r}\right|}{\lambda}\right)d^3\vec{r}'}{4\pi\left|\vec{r}'-\vec{r}\right|^2}$$

• Electric field and secondary emission:

$$S_{Si} = -\nabla \cdot j, \quad j_E = AT^2 \exp\left(\frac{-\left(\Phi_W - \left(q^3 E/\varepsilon_0\right)^{1/2}\right)}{kT_S}\right), \quad j_S = \sum_j \gamma_{ij} \phi_j$$

• Volumetric Plasma Charge:

$$\frac{\partial \rho_V}{\partial t} = \sum_i - \nabla \cdot \left(q_i \vec{\phi}_i \right)$$

• Surface and in Material Charges:

$$\frac{\partial \rho_S}{\partial t} = \sum_i -\nabla \cdot \left(q_i \vec{\phi}_i (1 + \gamma_i) \right) - \nabla \cdot \left(\sigma (-\nabla \Phi) + j_E \right)$$

University of Illinois Optical and Discharge Physics

ECOIL_0803_23

DESCRIPTION OF MODEL: ELECTRON ENERGY, TRANSPORT COEFFICIENTS

• Electron energy equation implicitly integrated using Successive-Over-Relaxation:

$$\frac{\partial(n_e\varepsilon)}{\partial t} = \vec{j} \cdot \vec{E} - n_e \sum_i N_i \kappa_i - \nabla \cdot \left(\frac{5}{2}\varepsilon\varphi - \lambda\nabla T_e\right), \quad \vec{j} = q\,\vec{\phi}_e$$

- Electron transport coefficients obtained from 2-term spherical harmonic expansion of Boltzmann's Equation.
- Ion transport coefficients obtained from tabulated values from the literature or using conventional approximation techniques.

University of Illinois Optical and Discharge Physics

DESCRIPTION OF MODEL: SECONDARY ELECTRONS-MONTE CARLO SIMULATION

- Transport of energetic secondary electrons is addressed with a Monte Carlo Simulation.
- MCS is periodically executed to provide electron impact source functions for continuity equations for charged and neutral particles.
- Algorithms in MCS account for large dynamic range in mesh resolution, electric field, and reactant densities.

• Select regions in which high energy electron transport is expected.

- Superimpose Cartesian MCS mesh on unstructured fluid mesh.
- Construct Greens functions for interpolation between meshes.

• The wave equation is solved in the frequency domain.

$$\nabla \cdot \left(\frac{1}{\mu} \nabla \overline{E}\right) = \frac{\partial^2 \left(\varepsilon \overline{E}\right)}{\partial t^2} + \frac{\partial \left(\sigma \overline{E} + \overline{J}_{antenna}\right)}{\partial t}$$

- All quantities are complex for to account for finite collision frequencies.
- Solved using method of Successive-over-Relaxation

• Fluid averaged values of mass density, mass momentum and thermal energy density obtained in using unsteady algorithms.

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \vec{v}) + (inlets, pumps)$$
$$\frac{\partial (\rho \vec{v})}{\partial t} = \nabla (NkT) - \nabla \cdot (\rho \vec{v} \vec{v}) - \nabla \cdot \overline{\mu} + \sum_{i} q_{i} N_{i} \vec{E}_{i}$$
$$\frac{\partial (\rho c_{p} T)}{\partial t} = -\nabla (-\kappa \nabla T + \rho \vec{v} c_{p} T) + P_{i} \nabla \cdot v_{f} - \sum_{i} R_{i} \Delta H_{i} + \sum_{i} \vec{j}_{i} \cdot \vec{E}$$

University of Illinois Optical and Discharge Physics

DESCRIPTION OF MODEL: NEUTRAL PARTICLE UPDATE

 Transport equations are implicitly solved using Successive-Over-Relaxation:

$$N_i(t + \Delta t) = N_i(t) - \nabla \cdot \left(\vec{v}_f - D_i N_T \nabla \left(\frac{N_i(t + \Delta t)}{N_T}\right)\right) + S_V + S_S$$

• Surface chemistry is addressed using "flux-in/flux-out" boundary conditions with reactive sticking coefficients

$$S_{Si} = \sum_{j} \left(\nabla \cdot \vec{\phi}_{j} \right) \gamma_{ij}$$

ATMOSPHERIC PRESSURE LINEAR CORONA

- Demonstrate concepts of pulsed atmospheric pressure electronegative plasma with linear corona discharge as used in polymer functionalization.
- Device is functionally a dielectric barrier discharge. Discharge is initiated by field emission from cathode.

- Dissociative attachment (e + $O_2 \rightarrow O^-$ + O) has a 5 eV threshold energy. Occurs dominantly in high E/N regions.
- 3-body non-dissociative attachment ($e + O_2 + M \rightarrow O_2^- + M$) has no threshold. Occurs with frequency 4 x 10⁸ s⁻¹ (2 ns lifetime) in atmospheric pressure air.
- O_2^- charge exchanges with O ($O_2^- + O \rightarrow O_2^- + O^-$, k = 1.5 x 10⁻¹⁰ cm³ s⁻¹). With maximum O density (4 x 10¹⁶ cm⁻³), lifetime is 0.1 µs (not very important).
- O⁻ associates by deattachment with O (O⁻ + O \rightarrow O₂ + e , k = 2 x 10⁻¹⁰ cm³ s⁻¹). With maximum O density (4 x 10¹⁶ cm⁻³), lifetime is 0.1 µs (not very important).
- Negative ions are fairly stable (and immobile) until ion-ion neutralization [k(effective-2 body)= 5 x 10⁻⁶ cm³ s⁻¹, lifetime 10's ns].

University of Illinois Optical and Discharge Physics

LINEAR CORONA: POTENTIAL, CHARGE

- Charge density sustains E/N at front of avalanche.
- Electric potential is shielded from the gap by charging of the dielectric web.

```
    N<sub>2</sub>/O<sub>2</sub> = 80/20, -15 kV,
100 ns (log-time)
```

MIN MAX

LINEAR CORONA: POTENTIAL, CHARGE

- Charge density sustains E/N at front of avalanche.
- Electric potential is shielded from the gap by charging of the dielectric web.

CONCLUDING REMARKS

- As you develop you models for electronegative plasmas (or any type plasma)...
- Construct your models as GENERALLY as possible. Never, never, never hardwire any species or chemical reaction mechanism in your code.
- Read all options, species, mechanisms as input from WELL MAINTAINED AND DOCUMENTED DATABASES.
- Develop STANDARDS for input, output, use of databases and visualization which ALL of your codes obey.
- DOCUMENT, DOCUMENT, DOCUMENT!!! Every input-variable, every output-parameter, every process. Have "official" versions.
- ARCHIVE, ARCHIVE, ARCHIVE!!! Example cases, documentation, best practice, official version....A computer knowledgeable person should be able to run cases in a day.

ACKNOWLEDGEMENTS

Postdoctoral Research Fellows:

Dr. Alex Vasenkov Dr. Wenli Collison

Graduate Students (past and present)

Pramod Subramonium Rajesh Dorai D. Shane Stafford

Funding Agencies

National Science Foundation Semiconductor Research Corp. 3M Inc.