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ABSTRACT 

  

Technologies based on atmospheric-pressure microplasmas (APMs) have been widely 

developed due to their unique nature such as its non-equilibrium state and capability for high 

pressure operation.  Electrophotographic printing, sensors, surface functionalization and plasma 

medicine are typical applications of APMs.  However, obtaining accurate measurements of key 

plasma parameters is challenging due to the complicated plasma dynamics and the small spatial 

and temporal scales.  In this work, results from a computational investigation of APMs using a 

two-dimensional, multi-fluid simulation platform are discussed with the goal of improving our 

fundamental understanding of the nonlinear plasma kinetics of APMs, and to provide design rules 

for the devices of interest.  In this thesis, the following problems are discussed:   

Micro-dielectric barrier discharges (mDBD’s) consist of micro-plasma devices (10-100 μm 

diameter) are finding continued use in the printing technologies.  In a print head used for 

ionography, for example, a third electrode is desirable to extract electron current out of the mDBD.  

As a result, the physical structure of micro-DBD and the electron emitting properties are important 

to its operation.  The characteristics of mDBD current extraction for frequencies from 2.5 to 25 

MHz are discussed.  After an electron avalanche in the mDBD cavity, the plasma can be attracted 

to the bottom dielectric or expelled from the mDBD’s cavity towards the extraction electrode as 

the rf voltage varies.  The electron current extraction and charge collection can be controlled by 

choice of rf frequency, rf driving voltage and permittivity of the dielectric barrier.   
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Independently controlled mDBD arrays consist of micro-plasma devices have been 

developed for high definition surface treatment and charging in ionography.  During the charging 

process, the direct or indirect interactions between the mDBD devices and target dielectric are 

important to operation.  The characteristics of atmospheric mDBD’s arrays sustained in N2 with 

an O2 impurity are discussed.  After electron plumes charge the target dielectric, a negative 

potential is generated by surface charging which deflects the incoming electron plumes.  This 

blooming effect can be mitigated by increasing the capacitance (or dielectric constant) of the target 

sheet.  Current extraction and surface charging are found to be sensitive to the adjacent of the 

mDBDs, dielectric properties of the materials being treated, gas mixture and rf driving frequencies.   

An atmospheric pressure corona discharge consists of a corona wire biased with 100s V dc 

plus a few kV of ac voltage are used in electrophotographic (EP) printing technologies for charging 

imaging surfaces.  After plasmas produced around the corona wire charge the underlying dielectric 

surface, the surface charging reduces the voltage drop across the gap between the corona wire and 

the dielectric surface which then terminates the discharge.  As this underlying surface moves 

during the charging process, previously charged surfaces are translated out of the field of view and 

are replaced with uncharged surface.  As a result, the uncharged fresh surface produces a rebound 

in the electric field which re-ignites the discharge.  This discharge is then asymmetric.  Depending 

on the speed of the underlying surface and its dielectric properties, the periodic re-ignition of the 

discharge can produce a periodic charging pattern on the moving surface.   

Atmospheric pressure microdischarges produced by conductive charge rollers (CR) are 

used in electrophotographic (EP) printing technologies for the surface charging of the cylindrical 

photoconductor (PC).  The characteristics of APMs sustained in dry air in the narrowing gap 

between a dc-biased CR and PC, and the charging properties on the PC surface are discussed.  It 

xix 
 



was found that surface charging and surface potential of the PC has varying degrees of uniformity 

and speed of charging depends on where the discharge is initiated and the degree of 

photoionization and photoelectron emission that provides remote seed electrons.  In real printing 

applications, the surfaces of both the CR and PC are rotating.  It was found that the rotation of the 

PC brings in uncharged surface, which restores the voltage drop in the gap and then re-ignites the 

plasma.  As the process repeats, self-pulsing microplasmas may be produced to form an oscillatory 

charging pattern on the PC surface.   

Pressure sensors in harsh environments often use piezoresistive and capacitive approaches 

to measure the pressure-produced deflection of a surface.  The smallest dimension of this class of 

sensors is about 1 mm.  To further reduce the size of such sensors, a microdischarge-based pressure 

sensor that is potentially capable of being an order of magnitude smaller has been recently 

proposed.  In these sensors, a microdischarge is initiated between an anode and two competing 

cathodes (a reference and sensing cathode) in a sealed chamber.  The sensing cathode is attached 

to a flexible diaphragm whose opposite surface is exposed to ambient.  As the external pressure 

deforms the diaphragm, the resulting change in inter-electrode spacing redistributes the current 

collected by the two competing cathodes.  The difference in current is a measure of the external 

pressure.  The plasma dynamics of microdischarge-based pressure sensors are discussed.  

Following the electron avalanche, a conductive plasma transfers the anode voltage to the cathodes.  

A periodic bullet-like ionization wave is then generated which in turn produces a pulse-modulated 

dc current collected on the cathodes.  The current collection varies with deflection of the diaphragm 

due to the external pressure and can also be optimized by adjusting the series impedance. 
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 INTRODUCTION 

 

The research and development of technologies using atmospheric-pressure plasmas (AP 

plasma) have been rapidly accelerating.  The literature published in the last two decades reveals a 

significant growth in plasma-assisted research and technologies.  Due to its unique nature of being 

non-equilibrium and its ability to operate at atmospheric pressure, AP plasma forms the basis of a 

wide range of applications, such as plasma display panel (PDP), UV/VUV photon sources, current 

and charge sources, plasma-assisted combustion, remediation of toxic gases, surface 

functionalization, plasma actuator, and plasma medicine.  This multi- and interdisciplinary effort 

encompasses fields of science and technology such as physics, chemistry, biology, electrical 

engineering, nuclear engineering, and chemical engineering. 

Despite the fact that AP plasmas are relatively straightforward to generate, maintaining the 

system in a stable region and obtaining accurate measurements of plasma parameters is challenging 

due to their complicated dynamics and small spatial and temporal scales.  In this thesis, a numerical 

simulation model, nonPDPSIM, is used to improve the fundamental understanding of the nonlinear 

plasma kinetics, and to provide design rules of the devices of interest.  In this chapter, the 

fundamentals of plasmas will be introduced, and then a brief description of plasma technologies 

used for the printing industry and pressure sensors will be presented. 
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1.1 Plasmas: The Fourth State of Matter 

Since ancient times, there has been a classification of the states of matter: solid, liquid, and 

gas.  These states of matter occur as the substance is heated (heating means putting energy into the 

system) to a temperature above the bonding energy corresponding to a particular state, and then a 

phase transition occurs to transform the substance to the next state of matter.  For example, the 

state of H2O is in a crystal solid form known as ice when the temperature is below T = 273 K (i.e. 

T ≈ 0.0235 eV, 1 eV ≈ 11,600 K).  The solid (A.K.A. the first state of matter) is a strongly coupled 

medium in which the bonding energy is higher than thermal energy.  As the temperature is raised 

to a temperature between T = 273–373 K, the thermal energy breaks the crystalline bond.  The 

solid melts to form a liquid in which intermolecular bonds are constantly broken and reformed.  

This H2O liquid is known as water—the second state of matter.  If the temperature is increased 

above T = 373 K, the intermolecular bonds are broken, and the H2O molecules becomes 

independent and free to move—it exists in the gas state known as steam.  By further heating the 

gas to the temperature in which the molecules and atoms are dissociated and the atomic bonds are 

broken, negative charges (electrons and negative ions) and positive ions are produced to form an 

ionized gas.  In 1900’s, the term “plasma” was first introduced by Lewi Tonks and Irving Langmuir 

to designate the portion of an glow discharge that embraces the whole space not occupied by 

sheaths.  In this portion, the density of ions and electrons are high but substantially equal.  The 

nature of high-conductivity and space-charge neutralization reminded Lewi Tonks and Irving 

Langmuir of blood plasma. The plasma is thus referred to as the “fourth state of matter.”[1-5]   
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1.2 Plasmas: The Definition 

Not just any ionized gas can be called plasma since there is always some small degree of 

ionization in any gas.  For example, an ionization rate on the order of 10 cm-3-s-1 is generated in 

the air at sea level by energetic cosmic rays and natural radioactivity.  After electron-ion pairs are 

produced, electrons are attached to oxygen immediately, and an ion density on the order of 103 

cm-3 is left in the air while the air density is on the order of 2.4 × 1019 cm-3.  In general, plasma is 

defined as a quasi-neutral gas of charged and neutral particles that exhibits collective behavior.  

More rigorously, three general criteria must be satisfied for charged particles to be called plasma:      

(i) Debye Shielding: Plasma has the ability to shield out the electric potential applied to it.  

The Debye length λD, a measure of shielding distance or the thickness of the sheath, 

must be smaller than the dimension of system L (λD << L).  This criterion indicates that 

whenever an electric potential is locally or externally introduced into the system, the 

shielding process occurs within λD; outside of λD, the plasma is “quasi-neutral,” that is 

ne ≈ ni, where ne and ni are electron and ion density, respectively.   

(ii) Collective behavior: As the charges in the plasma are in motion, they can generate local 

net charges and electric current, which might produce electric and magnetic fields.  As 

a result, the motion of charged particles far away depends not only on the local binary 

collisions but also on the electromagnetic force generated by the plasma in remote 

regions.  This collective behavior and the Debye shielding effect would be statically 

valid only if there are enough particles in the Debye sphere (a sphere with a radius 

equal to the Debye length) or a Debye cube; that is ND >> 1, where ND is the number 

of particles in a Debye sphere or a Debye cube.   
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(iii)Plasma frequency: the inertial response frequency of typical plasma oscillation, the 

electron plasma frequency, ωpe, must be larger than electron-neutral collision 

frequency, νc, so that the plasma oscillation effects on electrostatic (ES) and 

electromagnetic (EM) waves are not damped by the electron-neutral collision effect, 

and plasma can rapidly respond and shield out electric potential 

Among the three general criteria, the requirement of a large number of charged particles in 

a Debye sphere (ND >> 1) is the most essential condition.  The concepts of Debye shielding, 

collective behavior, and wave behavior will not be valid if this condition is not satisfied.[4-7]     

 

1.3 Plasmas: 99% of the Entire Visible Universe 

Plasmas exist as various types of laboratory and extraterrestrial plasmas.  As shown in Fig. 

1.1, the plasma density, ne, spans the range between 10-2 – 1028 cm-3, and the electron temperature, 

Te, varies between 10-2 – 105 eV.  For example, solar wind is a stream of charge particles with ne 

≈ 5 cm-3 and Te ≈ 50 eV; in the controlled nuclear fusion reactor, an electron temperature of Te ≈ 

10 keV and electron density of ne ≈ 1014 cm-3 are required to maintain the nuclear fusion reaction.     

According to the wide range of parameters, plasma is classified into several categories: 

(i) Complete Thermodynamic Equilibrium (CTE) plasma: In CTE plasmas, all 

temperatures of charge species, neutral particles, and radiation temperature are equal.  

The CTE plasmas cannot be easily achieved, hence only exist in stars or during a short 

interval of strong explosion. 

(ii) Local Thermodynamic Equilibrium (LTE) plasma: In LTE plasmas (A.K.A. thermal 

plasmas) all temperature except the radiation temperature are equal if operating under 

the conditions of atmospheric pressure and heavy particles having a high energy of 102 
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– 104 eV.  Since the collision frequency between electrons and heavy particles increases 

with pressure, two systems (electrons and heavy particles) reach equilibrium easily at 

atmospheric pressure.  An example of LTE-plasma is the high intensity of an electric 

arc at atmospheric pressure.        

(iii)Non-Local Thermodynamic Equilibrium (non-LET) plasma: In non-LTE plasmas 

(A.K.A. cold plasmas) the thermodynamic equilibrium between electrons and heavy 

particles is not reached.  The electron temperature (Te ≈ 1 – 10 eV) is much higher than 

the temperature of ions and neutral particles (Tg ≈ Ti ≈ 0.0235 eV) that are usually at 

room temperature.   

The non-LTE cold plasmas have been investigated for decades due to their non-equilibrium 

properties, high selectivity, and energy efficiency in plasma chemical reactions, as well as their 

potential applications in a variety of fields such as microelectronic fabrication, surface treatment, 

and UV/VUV photon sources.  This thesis focuses only on the non-LTE atmospheric pressure 

plasmas and their applications.[5,7,8,9]    

 

1.4 Townsend Breakdown 

Although plasmas have various types of applications and characteristics, the plasma 

discharges usually start with an electron avalanche.  A simplified model of an avalanche at steady 

state is shown in Fig. 1.2.  A cathode is separated from an anode by a gap of distance d, and the 

electrode is biased with voltage V.  A uniform electric field, E, is formed in the gap (E = V/d).  

Assume that the number of initial photoelectrons, n0, are induced by external UV photons at the 

cathode, and the number of secondary electrons, n0,sec, are produced at the cathode due to the 

secondary process.  The total number of electrons leaving the cathode is defined as n0,tot = n0 + 
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n0,sec.  These primary electrons near the cathode drift along the electric field to the anode, gaining 

energy and ionizing the gas.  This multiplication of electrons in cascade ionization is named 

avalanche.  The total number of electrons at the anode can be obtained by ntot = n0,tot eαd where α 

is the Townsend first ionization coefficient that gives electron production per unit length.  The 

secondary electrons produced by ion impact are defined as n0,sec = γn+, where γ is the secondary 

emission coefficient (the probability of secondary electron generation on the cathode by an ion 

impact), and n+ is the number of positive ions produced during the ionization process (n+ = ntot – 

n0 – n0,sec).  It is straightforward to obtain the total number of electrons reaching anode ntot = 

n0eαd/[1- γ(eαd-1)], and the total average current in the gap can be written as Itot = I0eαd/[1- γ(eαd-

1)].  Notice that γ(eαd-1) in the denominator represents the number of secondary electrons induced 

by positive ions that are produced after an avalanche by a primary electron.  The number of 

secondary electrons increases with first ionization coefficient α and secondary emission coefficient 

γ.  If a primary electron can produce one secondary electron, that is γ(eαd-1) = 1, theoretically the 

current becomes infinitely large but practically it is limited by the resistance of the circuits; the 

electric current due to an avalanche becomes sufficiently measurable and self-sustained (self-

sustained means the discharge will sustain itself even if the initial current I0 produced by the 

external source is removed), the gas becomes conductive, and the breakdown occurs.  As a result, 

the Townsend breakdown criterion for the stable state of a self-sustaining discharge can be 

expressed as γ(eαd-1) = 1 or αd = ln(1/γ+1); it is also the threshold or lower limit below which a 

spark cannot pass.  If γ(eαd-1) < 1 (or αd < ln(1/γ+1)), the current in the gap is non-self-sustained, 

the external source producing I0 is required to maintain the discharge.  This mechanism of ignition 

of self-sustained discharge is referred to as the Townsend breakdown mechanism—the breakdown 

is based on the avalanche via secondary electron emission at a low pressure or smaller gap (low 
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pd), and the applied electric field is not disturbed by the space charges produced by the electron 

avalanche.  Combining the breakdown condition and a conventional semi-empirical expression for 

α, a formula for the calculation of the breakdown-reduced electric field (E/p) as a function of pd 

can be obtained: 

 

where E, p, and d stand for electric field, pressure, and gap distance, respectively; and B and C are 

constants that depend on the gas mixture and the secondary electron coefficient γ.  This expression 

is also referred as the Paschen curve.[6,10-12,14]  

 

1.5 Spark Breakdown 

The Townsend breakdown mechanism usually occurs in a low-pressure environment or in 

a smaller gap (low pd) in which the avalanches (eαd) do not disturb the applied electric field in both 

cases, and the discharge is sustained by secondary electron emission from the cathode.  Under 

certain conditions such as operating in a large gap, higher pressure, or applied with overvoltage 

(applied voltage above the breakdown voltage), a spark breakdown mechanism might become 

dominant.  In contrast to the Townsend breakdown mechanism, the spark breakdown is based on 

the concept of the growth of a local and narrow ionized channel (A.K.A a streamer).  The streamer 

at a high pd develops faster than the characteristic time of an ion traveling through the gap 

generating secondary electrons.  As a result, the spark breakdown and a streamer are relatively 

independent to the cathode materials and secondary emission process.  

When the avalanche occurs at a high pd or overvoltage, the space-charge effect might 

become important.  The charge distributions and electric field are illustrated in Fig. 1.3 before and 

after the avalanche reaches the anode.  As the electron avalanche occurs between electrodes, a 
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B

p
E

+
=

7 
 



dipole-like field (E') is formed by the fast-moving electrons at the head of avalanche and the 

massive positive ions that are left behind.  If the amplification (eαd) proceeds, the space-charge 

density increases in the gap, and E' starts to distort the external field E0.  As a result, the total 

electric field (E = E0 + E') in front of the avalanche head becomes stronger due to this space-charge 

effect, which then accelerates the amplification of the space-charge density and ionization process.  

When the avalanche reaches the anode, the electrons are collected by the anodic metal, and only 

the massive ions of the ionic trail remain in the gap.  At this time, the total field, E, is then produced 

by the positive ions and its negative image charges in the electrodes.      

As the charge amplification (eαx) reaches a sufficiently high value so that the space-charge 

field becomes comparable to the external field (E' ≈ E0), the avalanche starts to transform into a 

streamer—a local and thin ionized plasma channel formed from the primary avalanche.  The 

streamer stretches toward one or both electrodes connecting the anode-cathode pair, which then 

leads to a spark discharge.  Schematics of cathode-directed and anode-directed streamers are 

shown in Fig. 1.4.  In a relatively short gap biased with overvoltage, the avalanche-to-streamer 

transformation occurs at the anode.  The electrons produced by photoionization or the electron 

detachment process near the anode, or photoemission from the cathode, are attracted into the ionic 

trail, initiating a secondary avalanche.  The electrons from the secondary avalanche pulled into the 

ionic trail form a quasi-neutral plasma channel, while the positive charges that are left behind 

enhance the space-charge effect.  The process repeats to trigger sequential avalanches and to 

provide a propagation of the streamer in the direction of the cathode.  As a result, this needle-like 

cathode-directed streamer (A.K.A. positive streamer) stretches from the anode carrying part of 

the anode potential toward the cathode.  The enhanced electric field in front of the needle-like 

streamer head triggers fast streamer propagation with a speed of 108 cm/s.  If the primary avalanche 
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transforms into a streamer halfway to the anode in a longer gap biased with a high overvoltage, 

the streamer then propagates toward both electrodes; if the transformation occurs near the cathode, 

the streamer mostly propagates toward the anode, and it is referred to as an anode-directed 

streamer (A.K.A. negative streamer).  In these cases, the mechanism of streamer propagation 

toward the cathode is the same as the cathode-directed streamer.  However, the propagation to the 

anode can be initiated by electrons provided not only by photoionization, photoemission, and the 

electron detachment process, but also by fast electrons moving in front of the primary avalanche, 

which indicates that the propagation of an anode-directed streamer without a photon source is 

possible.   

When the streamer approaches the cathode, a strong electric field between the streamer 

head and cathode stimulates an intense back ionization wave propagating from the cathode back 

toward the anode forming a stronger ionized plasma channel.  After the wave front reaches the 

anode and the conductive plasma channel connects the electrodes, the spark channel is then 

established.[6,10-11,15] 

 

1.6 Dielectric Barrier Discharge (DBDs)  

As the spark breakdown occurs at high pressure, a large current (typically 104–105 A) can 

flow through the conductive spark channel, which can lead to local Joule heating, the formation of 

shock waves, and eventually an arc.  To avoid the formation of sparks and the growth of a high-

density current in a streamer channel, a nanosecond-pulse power supply or a dielectric barrier 

discharge (DBD) are widely used in industrial applications especially at atmospheric pressure.[10-

11]  The ns-pulse power supply generates pulses with the duration of a few hundred nanoseconds, 
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which is sufficiently short to avoid the formation of a spark.  Using dielectric barrier discharges 

(DBDs) [16] is an alternative approach to avoid the formation of an arc.   

DBDs have been developed as stable, high-pressure and non-thermal plasma sources.[16]  

Conventional DBDs with large area electrodes sustained at atmospheric pressure typically have 

gap spacing of a few mm.  The electrodes are biased with an AC voltage of tens of Hz to as high 

as tens of MHz.  At low frequencies, the plasma in these devices operates in a filamentary mode 

with each individual filament having a diameter of tens to hundreds of µm.  When operating at a 

high frequency (tens of kHz or above) or with rapidly rising voltage pulses in mildly attaching gas 

mixtures, DBDs often visually appear to be a uniform plasma since the rapid onset of voltage and 

preionization from the prior pulse tend to work against the formation of large filaments.[17-18] 

A time evolution of a DBD is shown in Fig. 1.5.  In principle, when a DBD operates in a 

filamentary mode, upon initiation the filament propagates across the gap as a streamer.  When the 

streamer strikes the opposite surface, it electrically charges the dielectric surface and so removes 

the local potential drop across the gap.  As the gap voltage falls below its self-sustaining value, the 

plasma is quenched, thereby preventing the formation of an arc.  The surface charges on the 

dielectrics, excited states and ions left in the plasma channel are often referred to as microdischarge 

remnants.[10-11]  When the polarity changes on the following half ac cycle, a more intense 

electron avalanche may occur at the same location due to the higher voltage across the gap from 

the previously charged dielectrics.  This discharge occurs in many individual breakdown channels, 

which are referred to as microdischarges.  At atmospheric pressure, particularly in attaching gases, 

the plasma formation and decay times can be as short as a few to tens of ns whereas the ac period, 

even at rf frequencies, may be tens to hundreds of ns.  As a result, the micro-plasma may need to 

be re-ignited with each rf cycle. 
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DBDs form the basis of a wide range of applications due the unique features.[16,19]  For 

example, ozone generation and remediation of toxic gases [20-21], UV/VUV photon sources and 

polymer functionalization [22-24], and plasma display panels [25-26] are typical DBD 

applications.  Recently, DBDs are being implemented as plasma sources in biomedical medical 

applications [27-28], area-selective surface modification [29-31], investigations of nonlinear 

behavior [32], self-organized pattern formation[33-34] and large arrays of DBDs having apertures 

of tens of microns as lighting sources.[35-37]  In Chapters 3–6 of this thesis, I will further discuss 

the DBD-based technologies used in the printing industry. 

 

1.7 Microdischarges and Electrophotography  

The invention of electrophotography has introduced a worldwide revolution in document 

processing.[38-42]  It is the fundamental technology of virtually all office copiers and laser 

printers.  As shown in Fig. 1.6, the electrophotographic process generally consists of six steps: (1) 

charging, (2) exposure, (3) development, (4) transfer, (5) fusing, and (6) a cleaning step.  In the 

charging step, a charge roller or a corona discharge uniformly charges the surface of the 

photoconductor (PC) negatively.  In the exposure step, a laser beam forms a latent image on the 

PC surface.  The charged toner particles are then electrically attracted to the latent image on the 

PC in the development step.  In the transfer and fuse steps, the toner particles are transferred from 

the PC surface to a uniformly charged paper, and are fused by heating.  The residue charges and 

toner particles are then removed in the cleaning step.  After the cleaning of residue particles, the 

six steps repeat until the printing process is finished.   

 Among all of the steps, the charging of the PC surface is the key step to printing quality.  

Two charging methods shown in Fig. 1.6(b) are commonly used in electrophotography: charge 
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roller (CR) and corona discharge.  A Charge roller is a cylindrical conducting rubber biased with 

dc, pulsed dc, or ac voltage up to 1 kV.  In the charging process, microdischarges are generated in 

the narrowing gap of the converging CR and PC to charge the photoconductor surface negatively.  

Although the charging process in a charge roller can be achieved with relatively low voltage, a 

non-uniform periodic charged pattern was reported, which reduces the printing quality. Corona 

discharge contains a corona wire biased with a relatively larger potential up to a few kV dc plus 

ac voltage.  The wire is separated from the PC surface by a gap of tens of microns to millimeters.  

A large electric field is produced around the wire by geometric enhancement, and the discharge is 

initiated to charge the underlying PC surface.  Although the corona discharge charges the PC 

surface more uniformly compared to a charge roller, the corona consumes more power and 

produces a great amount of ozone that pollutes the environment and damages the photoconductor.  

 Ionography is a simplification of the electrophotographic process, in that the exposure step 

is eliminated.  Schematics of ionography are shown in Fig. 1.7.  After microdischarges are 

generated and controlled in a print head, as shown in Fig. 1.7(a), charge beams extracted from the 

print head form charge dots at selected locations on an image carrier, a dielectric cylinder, to create 

the latent image.  The charged toner particles are then electrically attracted to the latent images.  

Several different charge sources have been employed for ionography; mDBD (micro— dielectric 

barrier discharge) -based print heads are the most successful, and are still being used by high-end 

digital printers.  Through MEMS technology, mDBDs in print heads with aperture sizes of tens of 

microns have been developed for electrographic surface patterning at atmospheric pressure.  The 

key challenges for a print head–based print engine are (1) high current and (2) resolution 

requirements.  Since high current extraction is desirable in a print head for high-speed printing, 

plasma dynamics in mDBDs and current extraction mechanism are important to the operation.  The 
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resolution is also required but limited by extracted current beam size and blooming (dielectric 

effect) on the dielectric surface.  In this thesis, a 2-D multi-fluid model, nonPDPSIM, is used to 

understand the plasma dynamics and its interaction with surfaces. 

 

1.8 Microdischarge-based Pressure Sensor 

Microscale pressure sensing solutions have been widely investigated in the past five 

decades; the most commonly used mechanisms are piezoresistive and capacitive pressure 

sensors.[44]  Piezoresistive sensors typically measure stress in a diaphragm as it was deflected by 

applied pressure; capacitive pressure sensors measure displacement (or variance of capacitance) 

between the deflected metal diaphragm and a reference electrode.  The smallest micromachined 

pressure sensors that have been reported—e.g., for use within cardiac catheters—use these 

transduction techniques.[44]  For both types of sensors, the dimensions of the diaphragms of the 

smallest devices have been about 1 mm long.  A further reduction in size has been a challenge for 

both approaches.  Recently, a pressure-sensing approach based on microdischarges has been 

reported.[45-47]  Microdischarge-based pressure sensors operate by measuring the change in the 

spatial current distribution of confined microdischarges within the pressure sensors.  The 

microdischarge-based transducers have many potential attractive features.  For example, the 

inherent signal levels are large compared to both capacitive and piezoresistive devices, which 

eliminates the need for an interface circuit, and substantially reduces the need for amplification.  

This is very appealing from the viewpoint of miniaturization.  In this regard, the microdischarge 

cells that have been reported to date are at least 100× smaller in area than the smallest capacitive 

and piezoresistive pressure sensors that have been reported.  For example, the discharge gap in 

cells used for plasma display panels can be less than 100 µm.[48]  Having said that, the plasma 
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properties are not well understood in the microdischarge-based pressure sensors, which has 

motivated further investigation into optimizing their performance and reducing the dimension.    

 

1.9 Issues to Be Discussed 

The goal of this thesis is to improve the fundamental understandings of plasma dynamics 

and the plasma-surface interaction in the device of interest, and also to provide design rules to 

optimize the performance using a 2-D multi-fluid simulation platform, nonPDPSIM, which will 

be discussed in Chapter 2. 

In Chapter 3, micro—dielectric barrier discharges (mDBDs) sustained in atmospheric 

pressure N2, driven with radio frequency (rf) waveforms will be discussed.  The mDBDs are 

sandwich structures with an opening of tens of microns excited with rf voltage waveforms of up 

to 25 MHz.  Following the avalanche by electron impact ionization in the mDBD cavity, the plasma 

can be expelled from the mDBDs cavity toward the extraction electrode during the part of the rf 

cycle when the extraction electrode appears to be anodic.  The electron current extraction can be 

enhanced by biasing this electrode.  The charge collection can be controlled by choice of rf 

frequency, rf driving voltage, and permittivity of the dielectric barrier.   

In Chapter 4, independently controlled mDBD arrays used for the charge extraction and 

surface treatment of a dielectric sheet will be discussed.  When using the mDBDs to produce 

plumes of charged species, there are potential direct or indirect interactions between the mDBD 

devices.  In this chapter, the characteristics of atmospheric mDBDs arrays sustained in N2 with an 

O2 impurity using results from a 2-D simulation will be discussed.  The device of interest consists 

of a sandwich structure using layers of dc- and rf-biased electrodes to help shape the plume.  It 

was found that the adjacency of the mDBDs and the dielectric properties of the materials being 
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treated are important to the interactions between mDBDs in the array.  Scaling laws will be 

presented for the operating characteristics of these mDBDs arrays as a function of material 

properties, geometry, driving voltage waveform, and gas mixture.   

In Chapter 5, atmospheric pressure corona discharges used in electrophotographic (EP) 

printing technologies for charging imaging surfaces, such as photoconductors (PC), will be 

discussed.  An electric discharge is produced around the corona wire from which electrons drift 

toward and charge the underlying dielectric surface.  The surface charging reduces the voltage 

drop across the gap between the corona wire and the dielectric surface, which then terminates the 

discharge, as in a dielectric barrier discharge.  In printing applications, this underlying surface is 

continuously moving throughout the charging process.  For example, previously charged surfaces 

that had reduced the local electric field and terminated the local discharge are translated out of the 

field of view and are replaced with the uncharged surface.  The uncharged surface produces a 

rebound in the electric field in the vicinity of the corona wire, which in turn results in re-ignition 

of the discharge.  The discharge, so reignited, is then asymmetric.  It was found that in the idealized 

corona charging system I investigated, a negatively dc-biased corona blade with a dielectric-

covered ground electrode, the discharge is initially sustained by electron impact ionization from 

the bulk plasma and then dominated by ionization from sheath-accelerated secondary electrons.  

Depending on the speed of the underlying surface and its dielectric properties, the periodic re-

ignition of the discharge can produce a periodic charging pattern on the moving surface.   

In Chapter 6, the behavior of atmospheric pressure microdischarges sustained in dry air 

between a dc-biased charge roller (CR) and photoconductor (PC) will be discussed, as will the 

charging properties on the PC surface using results from a 2-D simulation.  In general, these 

microdischarges behave like a dielectric-barrier-discharge (DBD).  Microdischarges are produced 
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in the narrowing gap between the CR and PC, where the CR is biased with hundreds of volts plus 

a few kilovolt ac voltages.  After charging the underlying PC surface to a predetermined potential, 

these cathode-directed streamers can be terminated by the surface charging of the PC if operated 

with a dc or quasi-dc voltage on the CR.  In real printing applications, the surfaces of both the CR 

and PC are rotating.  The rotation of the PC brings in an uncharged surface, which restores the 

voltage drop between the CR and PC.  The rebound of E/N then re-ignites the plasma.  As the 

process repeats, self-pulsing microdischarges are produced to form an oscillatory charging pattern 

on the PC surface.  Under certain operating conditions, a Townsend-like discharge is observed in 

which a quasi-constant electric field in the gap and a uniform surface charging are produced.  I 

find that photoionization and photoemission are significant in the charging process.  When the PC 

surface is in motion, by varying applied voltage and the speed of the PC surface, a microdischarge 

and a Townsend-like discharge can be produced in the CR-PC gap.  With a higher applied voltage 

and a rapidly moving surface, an oscillatory charging pattern is formed by self-pulsing 

microdischarges.  With a relatively smaller voltage, a Townsend-like discharge becomes more 

dominant and a uniform charging pattern can be formed.  

In Chapter 7, a microdischarge-based pressure will be discussed.  A 3-D model is shown 

in Fig. 1.8.  In this sensor, a microdischarge is initiated between an anode (A) and two competing 

cathodes (a reference cathode, K1, and a sensing cathode, K2) in a sealed chamber.  The sensing 

cathode is attached to a flexible diaphragm that serves as a surface of the chamber.  As the external 

pressure deflects the diaphragm, the changing of inter-electrode spacing redistributes the current 

collected by the two competing cathodes.  In this chapter, I will discuss the plasma dynamics of 

microdischarge-based pressure sensors using results from a 2-D simulation.  I find that following 

the electron avalanche in the geometrically enhanced electric field at the edge of the anode, a 
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conductive plasma is created within tens of nanoseconds, which transfers the anode voltage to the 

cathodes.  A periodic bullet-like ionization wave (IW) is then generated in the chamber and 

produces a pulse-modulated dc current collected on K1 and K2.  The current collection varies with 

inter-electrode spacing (A-K2) that is changed by deflection of the diaphragm due to the external 

pressure; the current distribution can also be optimized by adjusting the impedance connected to 

electrodes.   
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1.10 Figures

 

Figure 1.1 Plasma can be characterized by electron density and temperature.  Electron 
Debye length λD (constant along the dashed lines) and the number of charged particles in a 
Debye cube ND (constant along solid lines) are also indicated in the figure.[5] 
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Figure 1.2 Illustration of avalanche and Townsend breakdown.[12-13]   
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(a) 

 

 

(b) 

Figure 1.3 The charge distribution and electric field in the gap (a) before and (b) after the 
avalanche reaches the anode.  E0, E’, and E represent the applied electric field, the field 
produced by space charges, and the total field (E = E0 + E’), respectively.[6,10-11] 
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(a) 

 

             

(b) 

Figure 1.4 Schematics of a (a) cathode-directed (or positive) streamer and (b) anode-
directed (or negative) streamer at t1 and t2 (t2 > t1).  The anode-directed (or negative) streamer 
occurs in a longer gap.[6,10-11] 
 

 

 

 

t1 

t2 

t1 
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Figure 1.5 A time evolution of DBDs between a pair of parallel electrodes biased with AC 
voltage.  The DBD prevents the formation of an arc. 
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(a) 

 
                     Charge Roller (CR)                                        Corona Discharge 

 
(b) 

 
Figure 1.6 Elements of electrophotography (EP). (a) Six steps of EP printing.[43]  (b) 
Surface charging by a charge roller (CR) and a corona discharge. 
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(a) 

 

(b) 

Figure 1.7 Schematic of ionography.  (a) A typical printing head.  (a) Printing process of 
iconography.……………………………………. 
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(a) 
 

 

(b) 

Figure 1.8 Schematic of microdischarge-based pressure sensor.  (a) 3-D model of the 
pressure sensor.  (b) S-S0 view of the structure.  I1 and I2 are discharge currents from two 
discharge paths. 
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 DESCRIPTION OF THE MODEL 

 

2.1 Introduction  

This research utilizes nonPDPSIM to study a wide range of plasma systems.  An overview 

of nonPDPSIM along with a detailed explanation of modules and a block diagram of the code (see 

Fig. 2.1) is necessary to appreciate the scope and context of the following analysis of the various 

discharge systems.  nonPDPSIM is a two-dimensional, multi-fluid hydrodynamic simulation code. 

It was originally written by Dr. Shahid Rauf and Prof. Mark J. Kushner in FORTRAN 77 to 

simulate plasma display panel (PDP) cells, but its application has grown in scope.[1]  In this code, 

the continuity equations and Poisson’s equation are simultaneously solved for densities of all 

charged species (electrons and ions), the charge density (in and on materials), and electric potential.  

The time evolution of the charged species densities and surface charges are simultaneously 

integrated with Poisson’s equation using a fully implicit Newton-Raphson iterative method.  The 

electron energy equation for the bulk electron temperature and neutral continuity equations are 

then also implicitly solved.  Rate coefficients and transport coefficients for bulk electrons are 

obtained from local solutions of Boltzmann’s equation for the electron energy distribution (EED).  

Once the electric potential, charge density, and electron temperature have been updated, radiation 

transport is addressed by using Greens function propagator.  The radiation is produced by 

relaxation of high-lying excited states of gas species.  An electron Monte Carlo simulation is 

applied to track the ionization sources produced by sheath-accelerated secondary electrons.  

Sources of secondary electrons include ion and photon fluxes onto surfaces.  The differential 
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equations are discretized using finite volume techniques. The numerical grid uses a boundary 

fitting unstructured mesh with triangle elements with multiple refinement zones.  Algorithms used 

in the model will be described in more detail in the following sections.[2-5]     

 

2.2 Geometry, Mesh Generation, and Discretization      

The differential equations in nonPDPSIM are discretized using finite volume techniques. 

The numerical grid uses a boundary fitting unstructured mesh with triangle elements with multiple 

refinement zones.  The unstructured mesh, consisting of vertices (or nodes) and faces and cells 

with triangular elements was generated offline using the software SKY/Mesh2.  SKY/Mesh2, an 

automatic mesh generator for surface meshes, was produced by SkyBlue systems.  This software 

is no longer commercially available.  To build a correct geometric model, the following data files 

are required: the geometry file, which defines the adjustable parameters of the model geometry; 

the points file, which defines the coordinates of the vertices of the model geometry; the edges file, 

which defines the connectivity of the geometry regions; the boundary conditions file, which 

defines the boundary conditions, such as material identities of the faces, edges and vertices, and 

zone numbers used for different initial conditions such as gas mixtures, pressure, and temperature.  

For applications that require high resolution modeling, SKY/Mesh2 provides an easy way to 

locally control the density and resolution of meshes using the refinement file.  Once all the input 

files are accurately created, the unstructured mesh with triangular elements containing the 

coordinates, connectivity, and boundary conditions of each node, edges and faces can be generated 

using SKY/Mesh2.  After the information of the mesh is fed into the nonPDPSIM, it is kept static 

throughout the simulation process.  A typical example of model geometry and its mesh is shown 
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in Fig. 2.2.  This model geometry is used for simulation of microdischarge-based pressure sensor 

and it will be discussed in Chapter 7.                            

The Vertex-Centered Finite Volume Method (VC-FVM) is used to discretize the partial 

differential equations addressing the plasma and fluid behavior in nonPDPSIM.  The variables of 

interest in the Finite Volume Method (FVM) are averaged over control volumes (CVs) which are 

defined using the vertex-centered approach.  Examples of control volume mesh (CV mesh) and 

actual mesh are shown in Fig. 2.3.  In an actual mesh, the vertices of each triangle are called “nodes” 

(e.g., nodes 1–7 in which nodes 2–7 are the “neighbors” of node 1). The nodes and the solid lines 

that connect nodes are the output from the mesh generator.  In a vertex-centered approach, the CVs 

are around the vertices (e.g., node 1) and the average variables over the CVs are stored on the 

nodes.  The CV that is associated with each node is constructed by identifying the intersection of 

the perpendicular bisectors between node 1 and its nearest neighbors (e.g., nodes 2-7); the “cell 

corners” (e.g. A, B, C, D, E, or F) are defined as the intersections of the perpendicular bisectors.  

The area enclosed by the dashed lines and cell corners (e.g., area ABCDEF) is referred to as “cell”. 

The volume of CV is obtained by VCV = Acell × DCV where VCV, Acell, and DCV represent volume of 

CV, area of the cell, and depth of CV respectively.  Since it is a 2-D simulation, volume of CV is 

referred to as the area of the cell, Acell, and DCV is cancelled from the equations.   

 Once the coordinates of cell corners are obtained, the control volume (Vi,j) and area (Ai,j) 

between node i and node j used for FVM can be calculated.  For example, A1,2 is the area between 

node 1 and node 2 is,  

            (2.1) 

where LA,B is the length between cell corners A and B; x and y are coordinates; V1,2 is the volume 

between node no. 1 and no. 2 is,       

,)()( 22
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               (2.2) 

where a, b, and α are the lengths and angle indicated in Fig. 2.3(b).  The total control volume 

associated with node 1 can be obtained by the summation of the volumes shared between node 1 

and each of its neighbors (e.g. nodes 2–7): 

               (2.3) 

Practically, the depth of a CV (DCV) is cancelled out as the ratio of area to volume in FVM is used. 

The depth becomes irrelevant in this 2-D simulation.  All the geometrical factors such as volumes 

and areas associated with nodes in the model geometry are computed at the beginning of the 

execution of the program.  The typical numerical operator of gradient, divergent, and Laplacian 

for FVM can be obtained by 

              (2.4) 

                 (2.5) 

                (2.6) 

where ϕi and ϕj are scalar variables on nodes i and j; li,j, θi,j,  and refers to distance, angle, 

flux, and surface area between nodes i and j; N and Vi  are the number of neighbors and the control 

volume for node i;  is a vector variable on node i. [6,9,11]   
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2.3 Interpolation of E/N 

 The value of E/N (electric field/total density) is a fundamental parameter in low 

temperature plasma.  However, it is not that straightforward on an unstructured mesh. In 

nonPDPSIM, an interpolation technique is used to interpolate the potential on the unstructured 

nodes back to the x-y axis.  An example of interpolation technique is shown in Fig. 2.4.  The 

algorithm goes through four quadrants of each node (e.g., node 1) and searches for two neighbors 

closest to each axis (+x, +y, -x and -y) based on the angle of the neighbor respect to the axes.  A 

line (e.g., dashed line) connecting these two nodes crosses the axis and gives an interpolated node 

(e.g., node a, b, c, and d) on the axis.  A linear interpolation is then performed to obtain the potential 

on the interpolated node.  For example, the voltage (Φa) on the interpolated node a can be obtained 

by  

                     (2.7) 

Electric field on the central node (e.g., node 1) can be computed using a finite difference method 

based on electric potential on nodes a – d.  Once the electric field is computed, E/N at each node 

is obtained by 

                 (2.8) 

where Ex and Ey are electric fields in x and y direction and N is the total density.  In certain 

situations where the electric field along the central node i and its neighbor node j is required, the 

field can be computed by  where li,j  (li,j is always positive) is the distance 

between node i and j, where the positive  represents the electric field vector pointing outward 
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from the central node i to its neighbor node j, while the negative  represents the vector pointing 

inward from the neighbor node j to the central node i.[6,8]     

 

2.4 Plasma Dynamics 

The fundamental equations we solved simultaneously for charged species and electric 

potential are, 

                (2.9) 

              (2.10) 

                 (2.11) 

where i, ε, Φ, , N, , σ, S, and q refer to charged species, permittivity, electric potential, surface 

charge density, charged species number density, species flux, material conductivity, source terms, 

and elementary charge respectively.  The source term, Si, includes the production and loss of 

species i due to electron impact excitation and ionization, heavy particle reactions, photo-

ionization, secondary electron emission, field emission, and surface reaction.  Poisson’s equation 

(Eq. (2.9)) is solved to determine the electric potential (Φ) for the whole computational domain 

except for the electrodes where potential is given as a boundary condition. The highly conductive 

materials or floating electrodes are treated as a dielectric with a high conductivity.  Charge species 

number densities (N) are obtained by solving the continuity equation (Eq. (2.10)).  The total charge 

density accumulated on the dielectric surface ( ) is computed using a surface charge balance 

equation (Eq. (2.11)) that includes fluxes of charged species onto the surface and the dielectric 

relaxation (or conduction process) by conductivity of materials.  Once the flux strikes a surface, a 
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flux-in/flux-out boundary condition is used for surface chemistry.  For example, as a flux strikes 

the surface, a certain portion of the flux will be returned and/or converted to other returning species 

governed by specifications selected by the user.  The flux returned to the plasma from the surface 

can be written as,     

              (2.12) 

where  and  are flux of species i and k into the surface,  is the fraction of species i that 

disappears on the surface, and is the fraction that the species k is converted to species i.  When 

the striking species are ions, the returning species are typically neutral species and secondary 

electron emission from the surface due to ion bombardment.    

When the momentum transfer collisional frequency is larger than the driving frequency of 

external electric field, the drift-diffusion (DD) approximation can be used instead of the 

momentum conservation equation. The inertia of charged particles is neglected and the drift 

velocity instantaneously responds to the external electric field and diffusion.  In the high pressure 

environment (pressure ≈ 100’s Torr), it is not necessary to solve the momentum equation for 

charged particle transport. In nonPDPSIM, the electron flux  is expressed using DD 

approximation, which considerably reduces the simulation time, while the ion flux   can be 

obtained by using DD approximation or solving the momentum conservation equation.  The DD 

approximation is given by    

         (2.13) 

where D, µ, and E are diffusion coefficients, mobility, and electric field.  When using the DD 

approximation, two methods are implemented to compute the flux: Eq. (2.13) can be directly 
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computed for drift-diffusion flux, or numerically implemented using the Scharfetter-Gummel 

scheme [12-13] which provides an optimized and stable approach.  The Scharfetter-Gummel flux 

has the properties of being upwind or downwind according to the direction and the magnitude of 

the drift flux compared to the diffusion flux.  In this method, the flux ( ) between node i and  j  

is given by 

         

              (2.14) 

where  and  are drift velocity and distance between nodes i and j, respectively. 

Due to dielectric relaxation, the maximum time step for explicit time integration in typical 

low temperature plasma simulations during the discharge pulse is on the order of 10-12 second, 

which makes the simulations slow for modeling practical devices and complicated gas mixtures.  

To overcome this time constraint, the equations (Eq. (2.9) – Eq. (2.11)) are solved simultaneously 

for time evolution of Φ, N, and  on each node using a fully implicit Newton-Raphson iterative 

method. A schematic of this method is shown in Fig. 2.5.  The variables at time (t + Δt) are obtained 

from 

           (2.15) 

where X represents Φ, N, and .  Eq.(2.9) – Eq.(2.11) are rewritten in terms of new functions F1, 

F2 and F3 

         (2.16) 

ji,φ

,
)/exp(1

)/exp(

,,,

,,,
,, 











∆−−
∆−−

=
jijiji

jijijiji
jiji Dv

DvNN
vφ



,,,, jijiji E
q
qv


µ= ,

2,
ji

ji

DD
D

+
=

2,
ji

ji

µµ
µ

+
=

jiv , ji,∆

sρ

,)()()()( XtXt
t
tXtXttX ∆+=∆

∂
∂

+=∆+

sρ

,0)(1 =−+Φ∇⋅∇= ∑ s
j

jjqNF ρε

37 
 



                    (2.17) 

               (2.18)  

which can be linearized using first order Taylor series expansion 

        

          (2.19) 

where  is function Fi and variable Xj at time (t + Δt).  For example, expansion of 

Eq. (2.16) can be linearized as shown as,  

     (2.20) 

where i is the node being solved and i+k is the dependence of the node i on all other nodes in the 

mesh.  Expansion of Eq. (2.16) – Eq. (2.18) can be rewritten in a matrix form , where 

matrix  is the Jacobian matrix,  is a vector which contains the unknown variables, and B is a 

vector that contains evaluation of functions F1 to F3 at time t on node i to k.  For example, the 

matrix form can be written as   
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 (2.21) 

Each row in the Jacobian matrix represents the effect of perturbation of variables on the functions 

F1 to F3.  For example, the first row in the Jacobian matrix describes how the perturbations of 

variables (Φ, N, and ) on node i to node k affect the evolution of function F1 on node i.  Once 

the Jacobian matrix   is computed, the unknown vector   can be obtained by inverting the 

Jacobian matrix and solving .  The variables at time (t + Δt) can be updated using 

.  The process will be iterated until the variables converge to 

, where  is the error criterion which is the specified tolerance. 

Once the density and potential (Φ, N, ) are updated, time is incrementally increased and 

the Eq. (2.16) – Eq. (2.18) are linearized and solved for that time step.  The time step used in the 

model can be a fixed time step (the time step is specified in the input file) or a dynamic time step 

(time step is determined according to the difficulty that the matrix solver encountered).  If the 

number of iterations for the matrix solver to find a converged solution increases (or decreases), the 
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time step for the next subsequent calculation will be reduced (increased) accordingly.  The typical 

time step for atmospheric pressure plasma simulations is 10-12 – 10-11 seconds and the typical 

number of iterations is 10 – 20.[5,6-10,12-14,16]      

      

2.5 Transport Coefficients, Rate Coefficients, and Electron Temperature 

Several methods are used in the nonPDPSIM to compute electron transport coefficients 

and source functions for electron impact reactions using the electron energy distribution  

(EED).   The simplest approach is to assume that the energy gained by charged particles from the 

electric field is locally balanced by the energy loss in collisional process. The transport and reaction 

coefficients then depend only on the local E/N. It is known as local field approximation (LFA).  

The LFA is valid if 

 or           (2.22) 

where νeq is the rate of energy (or momentum) relaxation and λeq is the distance over which the 

EED equilibrates.  In this method, the spatially independent ( ) and stationary 

( ) Boltzmann equation are solved for the local solution (the electron energy 

distribution  (EED)) in a Boltzmann module using a two-term spherical harmonic expansion 

for a wide range of values for E/N.  The EED is used to generate a lookup table of transport 

coefficients, electron impact reaction rates, electron temperature (Te), and momentum transfer 

collision frequency (νm) as a function of E/N.  This lookup table is interpolated and periodically 

updated during execution of the model as the composition of the electron collision partners varies.     

In certain applications such as cathode fall (a region of strong field gradient) of glow 

discharges or high-frequency low pressure discharges used for plasma processing, Eq. (2.22) is 
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not valid and LFA cannot provide satisfactory results.  To improve the accuracy, an alternative 

approach – an electron energy equation – is implemented to capture to some extent non-local 

effects by including the conduction and convection of electron energy.  The electron energy 

equation [15] is solved to obtain the average energy ( ) and electron temperature (Te): 

    

, and ,                          (2.23) 

where ne is electron density,  is the rate coefficient for power loss for collision of electrons with 

species i having density Ni and electron energy loss ,  is the electron flux obtained using the 

Scharfetter-Gummel scheme (as described in Sec. 2.4),  is electron thermal conductivity, and  

is the electron temperature expressed in terms of average energy defined as 

 .  The flux density of electron energy  is composed of the 

hydrodynamic flux of enthalpy and the heat conduction flux.  This equation is implicitly integrated 

in time using the successive over-relaxation technique (SOR) with an SOR parameter αSOR of 1.7 

– 1.8 specified in the input file.  The electron temperature of node i at the next time step and the 

(k+1)th iteration can be obtained by  

     (2.24)    

where i and  j are the central node and its neighbor, n and (n+1) are the current and next time steps, 

k and (k+1) are the old and updated iterations, Δt is the same time step as used in Newton-Raphson 

iterative method as described in Sec. 2.4,  The functions f1,j and f4,j contain the geometrical factors, 
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thermal conduction, and convection between node i and its neighbor node j; the function  f2,i  

contains the power deposition by Joule heating and power loss by collisions; the function f3,i 

contains the energy change due to collisions and variation of  .  The electron transport 

coefficients, rate coefficients, and collision frequency for use in solving Eq. (2.23) and Eq. (2.24) 

are obtained by solving Boltzmann’s equation for EED using a two-term spherical harmonic 

expansion, as in the LFA.  Once the electron temperature is obtained, a lookup table of the collision 

frequency and reaction rate coefficients is constructed using the new electron temperature as the 

lookup factor.  This table is also interpolated and periodically updated during simulation.        

 The mobility and diffusion coefficients for ions and neutral species do not dramatically 

change over the range of E/N of our interest, hence constant values are used for ion mobility at a 

given pressure, and the ion diffusion coefficient is given by the Einstein relation.  The diffusion 

coefficients for neutral species are determined by the Lennard-Jones approximation.      

The reaction mechanisms used for this simulation are specified in a separate input file 

entered into nonPDPSIM.  If the reaction is an electron impact reaction, the rate coefficients are 

obtained from the Boltzmann module as a function E/N or electron temperature. If the reactions 

involve only heavy ions, the Arrhenius equation is used to compute the rate coefficient 

                                                              (2.25) 

where k, A, Tg and Ea are rate coefficient, Arrhenius coefficient, gas temperature, and activation 

energy respectively.   During each time step the rates for all the reactions are calculated and the 

rate of production of charge and neutral species are coupled to the continuity equations via the 

source term in Eq. (2.17).[7-10,16-17] 

 

dtdne /

)exp(
300 g

a

n
g

T
ET

Ak −







=

42 
 



2.6 Radiation Transport  

Seed electrons far away from the avalanche can be generated by the photons from high-

lying excited states in the ionized regions.  This radiation transport is addressed using a Green’s 

function approach, the end product of which is photoionization in the gas phase and photoelectron 

emission from selected surfaces.  A schematic of radiation transport is shown in Fig. 2.6.  In our 

model, the photo-ionization source (cm-3s-1) for species i at location  resulting from photon 

emission by species j at location  is 

   ,                   

   ,    (2.26) 

where Nj is the radiating species density with Einstein coefficient Aj, and  is the photo-

ionization cross section for species i by photons emitted from species j.  In traversing the plasma, 

the photons are absorbed by species k with cross section .  This is addressed by the Green 

function propagator  which accounts for the probability of survival of the photons emitted 

at  to reach location  with absorption length .   also accounts for physical 

obstructions and view angles that might block the radiation.  In practice,  is computed 

only for a specified volume around .  The radiation transport model is an offline module, which 

is periodically called during the simulation to compute the photo-ionization and photoemission.[7-

8,10]  
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2.7 Secondary Electrons and Field Emission 

The algorithm used for radiation transport is also used to generate secondary electrons by 

photoemission from surfaces.  The flux of secondary electrons (cm-2s-1) from surface location  

is 

   ,       (2.27) 

where  is the photoemission probability for photon j.  As the ion flux strikes the dielectric 

surface, the flux of returning secondary electrons is given by  

                     (2.28) 

where  and  are the secondary electron emission coefficients and flux for species i.   is then 

used as a boundary condition for electron flux at surfaces.  The secondary emission coefficients 

used in these simulations were generally between 0.1 and 0.15 for all positive ions and photons.   

The electric field-enhanced thermionic emission from metal surfaces was also included in 

the model using the Richard Dushman equation (Eq. (2.29)) to provide the locally emitted electron 

current density as a function of the work function of the metal and the electric field at the surface 

of the metal   

         (2.29) 

where TS is the surface temperature, A is the Richardson-Dushman constant (120 A K-2 cm2), ΦW 

is the material work function, and η represents the local surface roughness that cannot be resolved 

by the mesh.[10] 
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2.8 Monte Carlo Simulation 

In certain applications, secondary electron emission is an important process which might 

dramatically change the plasma dynamics.[5]  In addition to the flux of secondary electrons 

represented using a fluid approximation, the Electron Monte Carlo Simulation (EMCS), a kinetic 

approach, is also implemented to more accurately resolve the energy transport and electron impact 

source results from the secondary electrons by tracking the trajectories of these secondary electrons 

emitted from surfaces.  Based on local ion and UV photon fluxes and their secondary electron 

emission coefficients, electron pseudo-particles are released with an initial energy of 4 eV from 

numerical mesh nodes on surfaces.  These pseudo-particles are weighted (with unit of electron/s) 

by the magnitude of the local ion flux, the secondary electron emission coefficient, and the number 

of particles released at each node.  The trajectories of the sheath accelerated secondary electrons 

and their ionization progeny are tracked until they hit boundaries, move out of the region allocated 

for the EMCS region or fall below a specified energy, thereby being removed from EMCS and 

join the bulk electron distribution.  The pseudo-particle energies are recorded during their 

trajectories to compute EEDs for the secondary electrons as a function of position f(ε,r) and from 

these EEDs, electron impact source functions are computed.  Electrons emitted from surfaces 

(called primary electrons that represent injected current) which join the bulk electrons are recorded 

as sources of current and are included in the continuity equations for the bulk electron distribution.  

Primary electrons which strike surfaces are summed into sources for surface charging or, if the 

surface is an electrode, as a source of current.   

The underlying computational mesh used in nonPDPSIM is unstructured, which makes 

integrating the trajectories of pseudo-particles in the EMCS difficult.  To facilitate these 

integrations, a spatially fine rectangular Cartesian mesh is overlaid onto the unstructured mesh.  A 
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schematic of unstructured and structured EMCS mesh is shown in Fig. 2.7.  Electric field quantities 

are interpolated onto the structured mesh for use in advancing the trajectories of the pseudo-

particles. The EEDs and electron impact source functions are computed on the structured mesh.  

These results are interpolated back onto the unstructured mesh.  The EMCS is called periodically 

during the simulation and the source functions produced by the EMCS are held constant during 

that call to the EMCS. 

 

2.9 Parallel Implementation of EMCS 

 The EMCS is computationally demanding.  The computation time required to track all the 

pseudo-particles and to statistically determine the collisions and their scattered velocities increases 

with the number of pseudo-particles launched from the emission nodes. Therefore, launching 

fewer pseudo-particles is preferable.  However, a sufficiently large number of particles need to be 

simulated to accurately resolve the energy transport (or electron impact source) and reduce the 

intrinsic noise produced by a finite number of pseudo-particles.  In order to properly represent the 

electrons emitted from the emission nodes using pseudo-particles while reducing the computation 

time, an optimized particle trajectory algorithm has been implemented and parallelized using Open 

Multi-Processing (Open MP).  OpenMP  is an application programming interface (API) that 

supports multi-platform shared memory multiprocessing programming.  It provides a portable and 

scalable model that enables programmers to develop shared memory parallel applications.[18]   

A schematic of original and optimized particle trajectory algorithms in the EMCS is shown 

in Fig. 2.8.  In the original algorithm, the pseudo-particles are “sequentially” launched from each 

emission node for which secondary emission occurs. This process is shown in Fig. 2.8(a)-(c).  For 

example, the particles are first released from node 1 (the number of particles launched from each 
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node is Np). The trajectories of particles are then tracked until they are removed from EMCS 

domain and join the bulk electron distribution (see Fig. 2.8(a)).  After all the particles from node 

1 are removed, the same amount of new particles (Np) are then released from node 2 (see Fig. 

2.8(b)).  The process repeats until the pseudo-particles are released and recorded sequentially from 

all the emission nodes (the number of emission nodes is Nn). 

 An optimized particle trajectory algorithm is illustrated in Fig. 2.8(d).  In this algorithm, 

particles are “simultaneously” launched from all emission nodes, Nn, for which secondary 

emission occurs.  The number of total particles can be as large as Np × Nn.  In general, the number 

of pseudo-particles launched from each node, Np, is on the order of a few hundreds and the number 

of emission nodes in EMCS domain, Nn, is typically tens to hundreds of nodes.  In the optimized 

algorithm, the large number of pseudo-particles (Np × Nn) simultaneously released from all 

emission nodes can be simulated using serial execution or OpenMP parallelization.  The 

performance of the optimized algorithm with OpenMP parallelization is demonstrated using an 

idealized testing case and the result is shown in Fig. 2.9(a) and (b) for Np = 400 and Np = 40,000 

particles released from each emission node.  The number of emission nodes in this idealized testing 

case is Nn = 59.  The speedup and efficiency are defined by  

          

and        (2.30) 

where Toriginal  is the total elapsed time spent on the original particle trajectory algorithm and 

Toptimized+parallelized is the total elapsed time spent on the optimized algorithm using OpenMP 

parallelization with 1 – 8 threads of execution.  In general, the speedup increases with number of 

threads and then reaches a plateau of speedup ≈ 2 – 3 at 4 – 5 threads.  It is expected that the 
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parallel performance is not scalable because of the general nature of nonPDPSIM – the code is 

written in a very general manner to enable use of many different options. This makes 

parallelization very difficult.  I also find that the speedup decreases with increasing Np and it might 

be because the size of the array for the particles becomes significantly large and the memory/cache 

cannot be sufficiently used when a large number of particles are launched (Np = 4,000 shown in 

Fig. 2.9(b)).  As a result, the total particles simultaneously emitted is so large (Np × Nn = 4,000 ×  

59 = 236,000) that the idle threads, memory allocation or memory/cache synchronization might 

start to limit the scalability.  In addition, the speedup for optimized algorithm using OpenMP 

parallelization with only one thread is higher than the speedup using original algorithm with serial 

execution.  It is also expected, since the optimized algorithm (shown in Fig. 2.8(d)) is more 

efficient than the original version (shown in Fig. 2.8(a) to (c)). The serial execution should also 

run faster. 
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2.10 Figures  

 

Figure 2.1 Block diagram of nonPDPSIM. 
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Figure 2.2 Model geometry and unstructured mesh used for the simulation of 
microdischarge-based pressure sensor.  The refinement zones are highlighted by red rectangles. 
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Figure 2.3 Control volume (CV) mesh and actual mesh.  (a) The vertex-centered control 
volume is constructed by identifying the intersections of the perpendicular bisectors between a 
node and it nearest neighbors; the “cell corners” (A, B, C, D, E, or F) are defined as the 
intersections of the perpendicular bisectors.  Actual mesh consists of vertices, faces, and cells.  
Nodes (no. 1–7) and solid lines which connect the nodes are output from the mesh generator.  
(b) The CV is centered around the vertex.     
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Figure 2.4 An example of the interpolation technique used to obtain electric field and E/N 
on an unstructured mesh. 
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Figure 2.5 A schematic of the Newton-Raphson iterative method. 
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Figure 2.6 Schematic of radiation transport.  Seeding of electrons far away from the 
avalanche is produced by photons from excited species in the ionization.  Both photoionization 
and photoemission (ϕS) from the surface result from photons emitted by species j.    
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Figure 2.7 An electron Monte Carlo simulation is used to follow trajectories of secondary 
electrons from surfaces.  The structured Cartesian mesh (CM) is overlaid onto the unstructured 
mesh (UM).  The CM overlays only the portion of the UM in which beam electron transport is 
expected to be important.  The resolution of the CM is chosen to be fine enough to capture the 
small scale feature of the UM.    
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Figure 2.8 A schematic of original and optimized particle trajectory algorithms in the 
EMCS.  In the original algorithm, particles are (a) first launched and from node 1.  After all 
particles from node 1 are tracked and removed from EMCS domain, new particles are then 
released from (b) node 2 and then (c) node 3.  The process repeats until particles are launched 
and recorded from all emission nodes.  In the optimized algorithm (d), particles are 
simultaneously released from all emission nodes.             
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Figure 2.9 The speedup and efficiency for (a) Np = 400; and (b) Np = 40,000 from each 
emission node.    
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 ELECTRON CURRENT EXTRACTION FROM RADIO 

FREQUENCY EXCITED MICRO-DIELECTRIC BARRIER 

DISCHARGES 

 

3.1 Introduction 

Extraction of electron current from arrays of microplasma devices is attractive due to its 

potential application for surface treatment of large areas with high spatial resolution.[1,2]  A 

number of microplasma configurations have been investigated, including the cathode boundary 

layer (CBL) discharge [3], the capillary plasma electrode configuration (CPE) [4-6], microhollow 

cathode discharges (MHCD) [7,8] and dielectric barrier discharges (DBDs).[9-12]  DBDs are 

becoming commonplace, particularly for applications at higher pressures (hundreds of Torr and 

above) due to their intrinsic stability against arcing.  In fact, commercial plasma display panels use 

a DBD configuration, albeit on scales of hundreds of microns.[13-30] 

One focus of this thesis is in arrays of DBDs operated at atmospheric pressure which can 

be used as sources of electron current for patterning dielectric surfaces.  In this application, charge 

is extracted out of a micro-DBD (or mDBD) having an electrode structure of tens of microns in 

size using an auxiliary electrode separated by hundreds of microns.[31]  These devices are capable 

of delivering narrow beams of extracted electron current tens of microns in diameter.  Arrays of 

these mDBD devices can be used to form latent electrostatic images in the context of ion deposition 
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printing, charge deposition printing, ionography, electron beam imaging and digital lithography.  

This image transfer device may include, for example, laser printers, copiers or facsimiles.[31-33] 

 On larger spatial scales, these 3-electrode configurations [31-33] for microplasmas have 

been used at low pressure to extract charges or create plumes of excited states.  For example, 

Pitchford et al [34,35] demonstrated efficient production of O2(1Δ) in a three-electrode micro-

cathode sustained discharge.  This configuration consisted of a MHCD acting as a plasma cathode 

to maintain a stable glow discharge between the MHCD and a third, positively DC biased planar 

electrode a few mm away.[7]  Müller et al [36] demonstrated that one can use a large area plasma 

source based on surface discharge DBD system for the production and extraction of ions.  A biased 

woven electrode is positioned on top of a flat disk of dielectric while the second grounded electrode 

is on its reverse side.  A biased electrode in front of the DBD is used for extraction of ion current.  

Recently, a micro-plasma stamp [27] was developed based on the principle of mDBDs by Lucas 

et al for micrometer scale area-selective modification of surface properties.  The dielectric barrier 

used in the micro-plasma stamp is a 600 µm thick PDMS (polydimethylsiloxane) layer patterned 

with circularly arranged cylindrical cavities having dimensions as small as a few microns.  The 

atmospheric pressure microplasmas are ignited in these geometrically defined cavities which are 

formed temporarily by compressing the microplasma stamp and the substrate to be treated.  The 

substrate acts as an extraction cathode. 

 Despite the fact that the plasmas sustained in mDBDs are relatively straight forward to 

generate, maintaining the system in a stable region and obtaining accurate measurements of plasma 

parameters are complicated and challenging due to their small spatial and temporal scales.  In order 

to provide insights to the nonlinear plasma kinetics under such conditions, numerical simulation 

models have been developed to investigate plasma dynamics and their scaling [24,28,37-40]. 
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In this chapter, the results of a numerical investigation of electron current extraction from 

an rf excited mDBD having an auxiliary electrode sustained in atmospheric pressure N2 were 

presented.  The mDBD device, shown in Fig. 3.1, consists of a cylindrical micro-cavity 65 µm in 

diameter in a grounded electrode, separated from an rf powered electrode by a dielectric sheet.  

The positively biased current extraction electrode is separated from the mDBD cavity by 400-500 

µm.  In this chapter, the rf driving voltage, frequency and dielectric constant of the insulator were 

parameterized.  It was found that in properly designed devices, the vast majority of extracted 

current is produced in the mDBD cavity rather than in the gap between grounded electrode and 

top extraction electrode.  Over the range of driving frequencies investigated (2.5 to 25 MHz) a pre-

pulse and a single current pulse is produced at high frequency (10-25 MHz) which breaks into 

multiple current pulses at lower frequencies (2.5-5 MHz).  Charge collection by the top biased 

electrode increases with increasing rf frequency, driving voltage and dielectric constant of the 

insulator.  

 The model used in this chapter is described in Sec. 3.2, followed by a discussion of the 

plasma dynamics and current extraction from mDBDs in Sec. 3.3.  In Sec. 3.4, the dielectric 

charging characteristics and ionization processes in the mDBD cavity and gap are discussed.  

Charge collection by varying rf frequency, driving voltage and dielectric constant is discussed in 

Sec. 3.5.  Sec. 3.6 contains our concluding remarks.  

 

3.2 Description of the Model and Reaction Mechanism 

 The model used in this chapter, nonPDPSIM, is described in detail elsewhere [41-44] and 

in Chapter 2.  The mDBD geometry is shown in Fig. 3.1.  An rf electrode with applied voltage 

from 1.4 to 5.6 kV and frequencies of 2.5 to 25 MHz is buried in a printed-circuit-board having 
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relative permittivity εr = ε/ε0 = 4.3.  A grounded electrode 25 μm thick is separated from the rf 

electrode by a 19 μm thick dielectric sheet having εr up to 20.  This dielectric layer is, in the model, 

a perfect insulator - the conductivity is zero so that the surface charges are laterally immobile on 

the dielectric sheet.  In reality, one can expect there will be some photon generated conductivity 

produced by the photon flux on the photoconductive materials used for dielectric.  The 

cylindrically symmetric mDBD cavity is 65 μm in diameter with a 35 μm diameter opening.  The 

top extraction electrode is biased with up to 2 kV and is separated from the grounded electrode by 

a 475 μm gap.  A 100 kΩ ballast resistor is connected to the extraction electrode to limit the current 

and so prevent arcing.  There are 5,700 computational nodes in the mesh of which 2,800 are in the 

plasma zone.  The typical mesh spacing is 2 μm in the microdischarge cavity and 12 μm in the gap.  

Although the mDBDs are typically used in arrays, this work focuses on the scaling of a single 

cylindrically symmetric device. 

 The gas fill is 1 atm of N2 with a small amount of O2 as an impurity – N2/O2 = 99.99/0.01 

at 300 K.  This impurity reflects the estimated purity of the gas used in experiments.  Including a 

small amount of O2 impurity also provides an unambiguous species which can be photoionized.  

Due to the magnitude of the calculation, a reduced reaction mechanism containing a subset of the 

reactions described in [45,46] to minimize the computation time while capturing the dominant 

plasma hydrodynamics and chemistry is used.  The reduced reaction mechanism includes N2, N2(v), 

N2
*, N2

**, N2
***, N2

+, N4
+, N, N*, N+, O2, O2(1∆), O2

+, O2
-, O3, O-, O, O(1D), O+ and electrons.  The 

states N2
* and N2

** are nominally N2(A,B) and N2(C) though the latter is treated as a lumped state 

including transitions higher than N2(C), and N2
*** is nominally N2(a') and higher states.   

The discharge is initiated by placing an electrically neutral electron-ion cloud centered in 

the mDBD cavity with peak density 1012 cm-3 and 100 μm in radius which is larger than mDBD 
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cavity.  The precise density and radius of the initiating cloud does not affect the predicted operation 

of the device except during the first half cycle.  A succession of rf cycles (referred to as pulses) 

are then computed.  The time step is chosen dynamically and is typically 6 × 10-12 s during the 

high voltage portion of the cycle and 10-11 s during the low voltage portion of the cycle.  Many rf 

cycles are computed until either quasi-steady state conditions are achieved or long term trends are 

discernable. 

  Although the gas temperature is held constant during the simulation, it is true that local gas 

heating can produce temperature excursions in pulsed microplasma devices.  The dominant heating 

mechanisms are ion acceleration followed by charge exchange reactions and Franck-Condon 

heating following dissociative excitation during the current pulse.  V-T relaxation of vibrationally 

excited states also contributes to gas heating after the current pulse.  Since the current pulse is short 

compared to the entire pulse period, the large surface-to-volume ratio of these devices enables 

rapid heat transfer to the walls.  This is facilitated by the majority of the heating occurring close to 

boundaries.  As such, large temperature excursions are not expected. 

 

3.3 Plasma Dynamics and Current Extraction from the mDBD 

 The characteristic of mDBD current extraction for a frequency of 25 MHz (pulse period of 

40 ns) will first be discussed.  The sinusoidal rf “peak” voltage is 1.4 kV and the top extraction 

voltage is 2 kV.  The dielectric constant for the insulating sheet is εr = 20.  The time evolution of 

E/N (electric field/gas number density) and electron density in the mDBD cavity are shown in Fig. 

3.2 over a single cycle.  The electron density in the plume of extracted current is shown in Fig. 3.3.  

The electron temperature Te, and electron impact ionization sources by bulk electrons, Se and 

secondary electrons Ssec, are shown in Fig. 3.4. 
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 The peak electron density, ne, within the mDBD cavity is approximately 3.2 × 1015 cm-3, a 

value that is maximum when the potential on the rf electrode crosses zero toward negative values.  

The change of ne in the mDBD cavity during the cycle is over a factor of 100.  ne in the electron 

plume has a maximum value of 2.5 × 1012 cm-3 220 µm above the mDBD cavity to 1012 cm-3 28 

µm below the collection electrode, corresponding to that time when the rf voltage cross zero 

towards negative values.  The electron density decays to negligible values within 15 ns of the peak 

as electrons are swept out of the gap into the collection electrode. 

 During the negative portion of the rf cycle, the positive ions in the mDBD cavity drift 

towards the dielectric and positively charge it.  When the rf potential (Vrf) crosses from negative 

to positive at the beginning of the cycle (t = 0 ns in the figures), the net voltage between the top 

extraction electrode and the now positive dielectric is small due to the previous positive charging 

of the dielectric.  The electrons in the mDBD drift towards the dielectric and begin to neutralize 

the positively charged dielectric.  Before the positive peak of Vrf at t = 10 ns, the negative charge 

collected on the dielectric has neutralized a sufficient amount of the positive charge that there is a 

net extracting field that accelerates electrons out of the mDBD cavity.  A small flux of electrons, 

the pre-pulse, escapes from the cavity and is accelerated across the gap by the extraction electrode.  

This pre-pulse is magnified with large values of dV/dt hence is more prominent at higher rf 

frequencies.   

 When Vrf decreases to zero at t = 20 ns, a negative potential still exists on the dielectric due 

to the previous collection of electrons.  At this point, the extraction field is at maximum and an 

electron plume is then extracted from the cavity, which reduces the electron density in the mDBD 

cavity.  At the same time, Se and Ssec reach their maximum values (1025 cm-3s-1), a consequence of 

an avalanche of remaining residual electrons in the mDBD cavity and by secondary electrons 
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emitted from the surface in the cavity.  This in-cavity avalanche then enhances the current 

extraction to the top biased electrode.  The electron plume reaches its greatest extent at 30 ns at 

the negative peak of Vrf.  As this proceeds, positive ions are being collected on the dielectric, which 

reduces the voltage drop across the gap.  The electron plume then begins to diminish and nearly 

extinguishes.  The cycle then restarts.   

 The electron plume is essentially extinguished every rf cycle and so requires re-ignition 

each cycle.  This re-ignition process is facilitated by the dynamics of E/N in the cavity.  At the 

zero-crossing of Vrf at t = 0 ns, electrons are attracted to the center of dielectric.  This conductive 

plasma then shields out and reduces the electric field, which in turn reduces the electron 

temperature Te and Se – they are only significant in the vicinity of the vertex of the grounded 

electrode where Se up to 2.5 × 1024 cm-3s-1 is produced.  After the electron plume is extracted out 

of the cavity at t = 20 ns, the electron density is reduced which enables the voltage that was 

previously confined to the sheath to be dropped across the mDBD cavity.  This enables a high Te 

which avalanches the small remaining electron density, proving a source as high as 3.8 × 1024 cm-

3s-1.  This avalanche enhances the electron plume and current extraction to the top biased electrode 

until the negative peak of Vrf is reached.  Shortly after the negative peak in Vrf at t = 35 ns, the 

electron flux is attracted to the center of dielectric, and the conductive plasma shields the electric 

field, which reduces the ionization source.  At this point, the ignition phase re-starts.  

 During the rf cycle, Se and Ssec are synchronized with the dynamics of Te.  The secondary 

electron ionization source Ssec extends over a larger volume than Se due to the longer mean free 

paths for the high energy electrons produced in the sheath compared to the bulk electrons 

accelerated in the volume.  Ssec is also enhanced by a nearly continuous flux of UV photons incident 

onto all surfaces inside the mDBD cavity, including the dielectric, as discussed below. 
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 The total charge density (ρ), positive and negative charges are shown in Fig. 3.5.  Excited 

states N2(C) and N2(A,B) density are shown in Fig. 3.6.  Before 10 ns, there is net positive charge 

on the dielectric and in the vicinity of the vertex of ground electrode.  Secondary electrons released 

from the grounded electrode are due to positive ion bombardment and photons.  The net positive 

charge on the dielectric transitions to negative charge within 10 ns.  As the electrons are extracted 

from the cavity at t = 20 ns, positive ions strike the negatively charged dielectric, releasing 

secondary electrons.  As a result, the secondary electron ionization source peaks near the discharge 

electrode and negatively charged dielectric when they behave cathodically.  In addition to positive 

ions producing secondary electrons which, upon sheath acceleration, produce ionization, UV 

photon emission from excited states of nitrogen, also help seed the secondary electrons and re-

ignite the avalanche.  There can also be secondary emission from the flux of long lived excited 

states to these surfaces.  Since the effective lifetimes of excited states are long compared to the 

intrapulse dynamics, at least for 25 MHz, there is a nearly continuous flux of UV photons which 

produce secondary electrons within the mDBD cavity.  If produced during the anodic cycle (for 

that surface), these secondary electrons are accelerated back into the surface with little change in 

local plasma properties.  If produced during the cathodic part of the cycle, the secondary electrons 

are accelerated by the sheath, and produce ionization throughout the volume of the mDBD cavity.  

Since Ssec is to some degree decoupled from the incident ion flux due to the availability of UV 

light, Ssec responds more quickly to changes in local electric field.  These long lived neutral excited 

states become more important at lower frequencies for re-ignition when the mDBD cavity is more 

depleted of seed electrons. 
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3.4 Dielectric Charging Characteristics and Ionization Processes 

As points of references, plasma properties will be discussed for the four sites (A, B, C and 

D) placed on the surface of the dielectric, in the cavity and in the gap, as shown in Fig. 3.1(b).  The 

surface charge density σS , and the electron density, ionization source and E/N at sites A and B are 

shown in Figs. 3.7 and 3.8 for discharges in 1 atm of N2 for frequencies νrf of 2.5 MHz to 25 MHz.  

For νrf up to 25 MHz , σS on the dielectric is nearly 180 degrees out of phase with Vrf.  This is 

largely expected as the dielectric sheet behaves as a capacitor and the frequency is high, which 

maximizes the displacement current.  However, due to the power dissipation in the device, this is 

not a purely capacitive system, and so there is a phase delay between Vrf, dielectric charging and 

surface potential.  At 25 MHz, when Vrf increases to its positive peak at t = 10 ns, the negative 

charge density on the dielectric also reaches its peak value.  However, the surface potential on the 

dielectric is still positive.  Then σS slowly decreases (becomes less negative) with decreasing rf 

voltage.  During this time, the positive potential on the dielectric decreases towards zero and then 

changes its polarity to negative.  As the rf voltage reduces to nearly zero at t = 20 ns, a negative 

potential up to -500 V is produced due to the previously collected negative surface charges.  In 

comparison, the discharge electrode behaves anodically to enable an electron avalanche and a large 

electron plume is expelled from the microdischarge cavity.  When Vrf changes its polarity to 

negative, positive ions are drawn into the dielectric which charges it positively.  The negative 

potential on the dielectric is increased (become less negative) and then transitions to positive 

values.  

Over the range of frequencies investigated, this charging cycle does not dramatically 

change.  However, as the frequency decreases, structure is produced in the local dielectric potential 

and σS.  This oscillating structure can be attributed to overshoot.  Since the capacitance of the 
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dielectric is fixed, there is a finite amount of charged particle fluence (either negative or positive) 

required to change the potential on the dielectric by a given amount.  (Fluence, cm-2, is flux 

integrated over time.)  When this critical fluence is collected, the local potential of the dielectric 

builds to a sufficiently large value that it begins to retard the flux.  At high frequencies, these time 

scales correspond to the rf period, and so there is a smooth transition from positive to negative 

dielectric potential.  At lower frequencies, however, these dielectric charging times are shorter 

than the rf period.  So the retarding potential on the dielectric slows down the collection of negative 

(or positive) charges at a time that Vrf is still increasing (or decreasing).  The still increasing (or 

decreasing) Vrf then restarts the charge collection which produces the local minimum in the surface 

potential.    

In addition to overshoot in surface charging, periodic bursts of ionization can lead to 

multiple peaks in current extraction.  Vrf, local potential, E/N, electron density and ionization 

source at site B are shown in Fig. 3.8 for νrf of 25 and 2.5 MHz.  Corresponding extracted currents 

collected on the top electrode are shown in Fig. 3.9.  At 25 MHz, a pre-pulse electron current of 

0.3 mA is collected by the extraction electrode which is then followed by a larger main current 

pulse.  This pre-pulse is correlated with large values of dV/dt and occurs before the zero-crossing 

of rf voltage at 20 ns.  As the frequency decreases to 15 MHz, the pre-pulse is reduced to 0.1 mA 

and by 5 MHz, the pre-pulse is suppressed.  Before the rf voltage changes its polarity to negative, 

the local potential in the cavity reaches its negative peak which increases E/N and the ionization 

sources (Se and Ssec) in the mDBD cavity.  This ionization provides the electron source for the main 

current pulse.  At 25 MHz, for example, the local peak in E/N in the mDBD cavity reaches as high 

as 1700 Td (1 Td [Townsend] = 10-17 V-cm2) slightly before Vrf zero-crossing at 20 ns, and the 

peak electron source exceeds 3 × 1024 cm-3s-1.  The corresponding electron density then reaches 
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3.5 × 1014 cm-3.  The conductive, high electron density plasma in the cavity then shields out the 

electric field, E/N decreases which then decreases the electron sources.  At all frequencies, the 

magnitudes of Se and Ssec are commensurate to each other, with Ssec lasting somewhat longer due 

to the long lived excited states which, though photoelectron production, continue to seed secondary 

electrons at surfaces.  For example, at 25 MHz the peak electron source from bulk plasma 

ionization (Se) is essentially the same as that from secondary electron ionization (Ssec), on the order 

of 3 × 1024 cm-3s-1. 

Shortly after the negative peak in Vrf at 30 ns, the local potential at site B becomes more 

positive due to the positive surface charges, the electron plume begins to extinguish and electron 

flux is attracted to the dielectric.  As the frequency decreases and the period becomes longer, there 

is sufficient electron current extracted to deplete the cavity.  The local E/N then rebounds, which 

produces ionization sources, which in turn repopulate the electron density in the cavity which 

enables another burst of electron current to be collected.  If Vrf has not yet changed sign, the process 

can repeat itself.  

For example, at 2.5 MHz, the period of 400 ns is sufficient for multiple cycles of electron 

depletion and avalanche to occur.  As shown in Fig. 3.8, depletion of electrons in the mDBD cavity 

as Vrf crosses zero towards negative values at 200 ns produces a peak in E/N of 1,540 Td.  This 

produces a burst of ionization which repopulates the mDBD cavity but also reduces E/N to about 

850 Td  These electrons are extracted producing the first current pulse (see Fig. 3.9) with the local 

electron density decreasing from 4 × 1012 cm-3 to 3 × 1011 cm-3.  The E/N then recovers to 1,260 

Td, the electron source follows E/N and then a second local peak in electron density is formed for 

the second current pulse.  The process repeats a third time before Vrf changes sign.  The re-ignition 

of the plasma following each extraction is facilitated by a quasi-dc production of secondary 
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electrons from the dielectric and grounded electrode by UV photons from long lived excited states.  

Note that the same process occurs on the anodic part of the rf cycle, producing peaks in the E/N, 

electron density and ionization sources.  These undulations are not reflected in the electron current 

collected at the top electrode since the net field is pointing in the opposite direction – the bursts of 

electron current are collected on the dielectric surface. 

In general, Se and Ssec follow E/N during an rf period for both 25 and 2.5 MHz, while Ssec 

is longer-lived in the cavity.  However, for 25 MHz when Vrf cross zero at t = 0, Ssec is as large as 

1.6 × 1024 cm-3s-1 but Se is negligible at site B, as shown in Fig. 3.8(a).  At this time, electrons are 

attracted to the center dielectric due to the previous positive surface charging and the highly 

conductive plasma shields the local electric field, which results in the small bulk ionization source.  

At this time, however, a large amount of ionization by secondary electrons ionization occurs near 

the vicinity of the tip of the discharge electrode, boosting Ssec, as the electrode behave cathodically.   

Note that the peaks Se and Ssec are on the order of 5 × 1023 cm-3s-1 at 2.5 MHz which is 6 

times smaller than the peak electron ionization sources at 25 MHz.  The lower electron source at 

2.5 MHz can be attributed to the lower residual electron density in the cavity surviving from the 

prior pulse.  At 2.5 MHz, the period is long enough that the the majority of electrons are extracted 

out of the cavity.  Positive ion and UV fluxes from long lived excited states can facilitate re-

ignition at 2.5 MHz by production of secondary electrons from surfaces.  However these secondary 

electron sources are too small to trigger as large an avalanche as that produced by the higher 

residual electron density at 25 MHz.  As a result, the peak current collection tends to decrease with 

decreasing frequency. 

The trends in extracted and collected current from 25 and to 2.5 MHz include the loss of 

the pre-pulse, due in large part to the decreasing dV/dt at low frequency, and the onset of 
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modulation in the current at low frequency due to the cycle of extraction, depletion and avalanche 

at low frequency.  Similar trends of oscillating currents (single current pulses at high frequency, 

multiple current pulses at low frequency) in DBDs were reported in the modeling results by 

Petrović et al [37], and in the experimental results by Radu et al [47] and J. Shin [38].  These 

oscillations were reported for larger parallel plate devices and at lower frequencies (kHz).  

However the basic sequence of events is similar – charging, depletion, ionization, extraction. 

Multiple pulses of current at 2.5 MHz are also experimentally observed when using the 

same sandwich mDBD configuration of slightly different size and operated under similar 

conditions.  In the experiment, the top extraction electrode is grounded, a -1 kV DC voltage is 

applied to both rf and discharge electrode, while rf electrode is also biased with a 1 kV ac voltage 

at 2.5 MHz.  The experimental voltage drop between the rf and discharge electrode and current 

collection on the top electrode are shown in Fig. 3.10(a).  From a biasing standpoint, this 

arrangement is equivalent to that used in the simulated results shown in Fig. 3.10(b).  The results 

from the simulation are in basic agreement with the experiment data, although the current is smaller 

in experiment which can be attributed to differences in geometry and operating conditions.  The 

predicted triple pulses of current extracted at the zero crossing of the rf voltage are corroborated 

by the experiment.   The transition from triple pulses to double pulses is observed both 

experimentally and computationally. 

 Recall that the top electrode is biased positively and there is a ground electrode at the top 

of the mDBD cavity.  Although the current flowing from the buried rf electrode having an rf bias 

must be ac, there is no requirement that the current flowing to the top electrode is ac since there is 

a non-capacitive path to ground through the top electrode.  If the potential drop between the top 

extraction electrode and ground electrode is large enough there could be a dc discharge, and an 

73 
 



optimally designed device would either avoid this possibility with a lower extraction voltage, or 

limit the current with an appropriate ballast resistor.  Even with a less than self-sustaining voltage 

on the extraction electrode, it is possible to have a quasi-dc current by virtue of the electrons 

injected into the gap from the mDBD cavity.  The dc discharge between the grounded and top 

extraction electrode would then operate as an externally sustained discharge, in analogy to, for 

example, electron beam sustained discharges.[48] 

To illustrate these scalings, the electron and positive ion density at site D (see Fig. 3.1(b)), 

and extracted electron current are shown in Fig. 3.11 as a function of extraction voltage on the top 

electrode for 25 MHz excitation on the rf electrode.  With a 1 kV extraction voltage, the current 

on the top electrode consists of a series of pulses.  The time averaged E/N (80 Td) across the gap 

is too small to self-sustain (or avalanche) a discharge, and so current is collected only when 

electrons are extracted from the mDBD cavity.  The probability of recombination and attachment 

for this gas mixture during the transit time across the gap is small, and so the majority of the 

extracted current out of the mDBD cavity is swept to the top electrode.  The E/N is small enough 

that there is only a small amount of ionization and positive charge generated in the gap. 

For a 2 kV extraction voltage, the collected electron current begins as being purely pulsed, 

which reflects the periodic extraction of electrons from the mDBD cavity.  With this time averaged 

E/N (170 Td), there is non-negligible ionization within the gap, which has two consequences.  First, 

the pulsed current extracted from the mDBD cavity is amplified in crossing the gap, as shown by 

the pulses prior to 400 ns.  Second, ionization and excitation in the gap increases the positive ion 

density, dominated by N4
+ for these conditions, and excited state density.  (The negative ion density 

due to the O2 impurity is generally at least 2 orders of magnitude smaller.)  The positive ions have 

a much lower drift velocity towards the grounded electrode and so are not highly modulated during 
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the rf cycle.  A transition occurs in the current collected by the top electrode to a pulsed modulated 

dc current.  At this time the gradually increasing positive ions perturb the local electric field, 

voltage and charge collection until it reaches an oscillatory steady state.  On a pulse-to-pulse basis, 

positive ions accumulate in the gap over time, as these heavier positive ions are not able to respond 

to the instantaneous electric field and create a local positive potential which enhances the 

extraction of charge from the gap.  The accumulating excited states also increase the efficiency of 

ionization through multistep collisions.  With a 2 kV extraction bias, the positive charge density 

ρ+ at site D increases monotonically until reaching a steady state at 800 ns, which leads to a pulsed 

modulated dc current.  This pulsed modulated dc current can be avoided by using a lower 

extraction voltage.  For example, purely pulsed electron currents are collected by applying 1 and 

1.5 kV top extraction voltages, as shown in Fig. 3.11(b). 

 

3.5 Total Charge Collection 

 Total charge collected per pulse and time integrated charge collection on the top electrode 

as a function of time for rf frequencies of 2.5 to 25 MHz are shown in Fig. 3.12.  The top extraction 

electrode is biased with +2 kV.  For early pulses and lower frequencies, the charge per pulse 

collected is essentially the same, 3.5 × 10-11 C/pulse, and limited by the capacitance of the dielectric 

layer above the rf electrode.  Although more peak current is collected at higher frequency, as shown 

in Fig. 3.9, more charge per pulse is collected by operating at lower frequency due to the longer 

charge extraction period and multiple current pulses per rf cycle.  Integrated current as a function 

of time at 25 MHz is higher due simply to the higher repetition rate.  For frequencies greater than 

10-15 MHz, charge collection per pulse is limited by the shorter rf period.  The charge/pulse 

75 
 



increases with number of the pulses until a quasi-dc condition is reached due to the accumulation 

of excited states and ions in the gap.  At this point quasi-dc current is collected. 

 Integrated charge collection as a function of time for different rf voltages (1.4 to 5.6 kV) 

at 25 MHz is shown in Fig. 3.13.  The corresponding dielectric properties (Vrf, surface charge and 

surface potential) at site A and ionization characteristics (E/N, electron density and ionization 

sources) at site B are shown in Fig. 3.14.  The magnitude of the charging of the dielectric scales 

nearly linearly with Vrf, as the discharge is dominantly capacitive – the charged particle flux to the 

intervening dielectric is that value that charges the dielectric to Vrf.  The nearly linear increase of 

collected charge with voltage, is less clearly correlated with this capacitive current.  In general, 

electron density, E/N and ionization sources at site B tend to increase with rf voltage.  However, 

as the electron density increases, the local value of E/N decreases due to plasma shielding.  In spite 

of this shielding, the electron impact sources by both bulk and sheath accelerated electrons increase 

with applied voltage due to non-local electron transport.  The heating of electrons at the boundaries 

of the microcavity by the larger sheath electric fields (either by bulk Joule heating or secondary 

electron acceleration) convects into the center of the mDBD cavity to increase ionization rates.  

 The local electron density at site B reaches its minimum and ionization processes tend to 

start earlier at higher rf voltage.  These trends are due to the surface voltage at site A reaching its 

negative peak value earlier at Vrf = 5.6 kV which leads to a time-shift of electron current extraction 

and ionization process.  For example, the dielectric surface potential at site A reaches its most 

negative potential at t = 20 ns and 17 ns for Vrf=1.4 kV and 5.6 kV, the corresponding ionization 

source Se also peaks at t = 21.5 ns and 16 ns, respectively. 

 Charge collection on the top electrode as a function of dielectric constant (εr=ε/ε0) of the 

insulator between the discharge electrode and rf electrode is shown as a function of time in Fig. 
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3.15 for a frequency of 25 MHz.  The dielectric properties at site A and ionization characteristics 

at site B (E/N and ionization sources) and C (electron density) are shown in Fig. 3.16 for ε/ε0=2, 

5, 10, and 20.  Since the intervening dielectric acts as a capacitor whose capacitance scales with εr, 

its charging characteristics should scale with εr.  That is, the surface charge required to charge the 

dielectric to the line voltage should increase linearly with εr.  If I normalize charge collection by 

εr, differences are then attributable to transport processes.  In general, charge collected per pulse 

normalized by εr is approximately equal (to within 50%) over a factor of ten in εr.  This indicates 

that charge collection, at least for a small number of pulses, is limited by the series capacitance of 

the dielectric.  Integrated charge collection then increases with increasing εr.  For later pulses 

normalized charge collection increases with increasing dielectric constant; 2 × 10-12 C/pulse/εr with 

ε/ε0=2, increasing to 4.5 × 10-12 C/pulse/εr with ε/ε0=20.  

 The normalized charge density (surface charge density/εr), Vrf and local potential at site A 

for different εr are shown in Fig. 3.16.  The normalized charge density collected at site A is 

essentially the same during the rf period for all values of εr.  The surface potential on the dielectric 

reaches a maximum magnitude of 500 V, and as εr increases, more charge is required to charge the 

surface to this potential, thereby necessitating an increase in current density and so electron density.  

Electron densities at site C reach their maximum values when the current is extracted out of the 

mDBD cavity.  Peak electron densities scale nearly linearly with εr, up to 1015 cm-3 for εr =20.  As 

ε/ε0 decreases from 20 to 2, the dielectric charging time decreases and so the overshoot in electron 

density is more prominent.  The peak value of E/N, 1800-2000 Td, is largely determined by the 

nearly constant magnitude of surface potential which occurs when the electrons are expelled out 

of mDBD cavity.  So this peak value is largely determined by the vacuum fields.  In spite of the 

low electron densities in the cavity, the large value of E/N produces the maximum Se, up to 2.3 × 
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1024 cm-3s-1 for ε/ε0 =20.  Ionization by secondary electrons has values that are essentially the same 

as for ionization by bulk electrons over the entire range of εr investigated.  

 

3.6 Concluding Remarks 

 Dielectric barrier discharges are being used as current sources for charging of surfaces in 

a variety of applications, and digital printing in particular.  Using results from a two-dimensional 

plasma hydrodynamics model, I investigated the properties of a micro-DBD with an additional 

charge extraction electrode sustained in atmospheric pressure N2 with a small O2 impurity.  

Properties were investigated as a function of driving voltage, frequency, dielectric constant, and 

extraction voltage.  For the design investigated, the electron density produced within the mDBD 

cavity can be extracted into a plume that is collected by a dc biased electrode.  The value of the 

extraction bias determines whether the device delivers continuous pulses of extracted current, or 

transitions to a pulse modulated dc current source.  I found that in the pulsed mode, current 

extraction is ultimately limited by charging of the intervening dielectric – more charge extraction 

for larger dielectric constants.  I also found that the shape of the current pulse is a function of 

frequency.  At high frequencies (tens of MHz), a single current pulse is extracted during each rf 

cycle.  At low frequencies (a few MHz), the current pulse is highly modulated into individual 

peaks, produced by successively charging and discharging of the intervening dielectric.  Extraction 

of current from the mDBD cavity can deplete the electron density to such a large extent that the 

plasma inside the mDBD needs to be re-ignited each rf cycle.  The re-ignition is facilitated, in part, 

by long lived excited states that provide photons which generate secondary electrons from the 

insides surfaces of the cavity.  

78 
 



 In summary, this chapter aims at understanding kinetic and plasma dynamic process 

occurring in rf excited micro-dielectric barrier discharges used for print heads.  Since it is difficult 

to measure plasma properties in the mDBD cavities due to their small size, high pressure and 

transient nature, the modeling provides valuable insights and design rules.  For example, by choice 

of rf frequencies, rf driving voltages, and properties of bottom dielectric, electron plumes can be 

carefully shaped and controlled.  In addition, a triple pulse of current extraction excited by rf 

voltage at 2.5 MHz is predicted by simulation, which shown the power of the code.    
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3.7 Figures  

 

Figure 3.1 Schematic of the cylindrical symmetric mDBD device.  (a) Entire device and full 
computational domain.  (b) Enlargement of mDBD cavity and location of sites A, B, C and D 
that are used to provide surface properties and ionization characteristics. 
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Figure 3.2 Time evolution of electron density (log scale, cm-3) and E/N (at the center of 
contour labels, Td) in the mDBD cavity at different phases of the rf driving voltage of 1.4 kV 
during a 40 ns (25 MHz) cycle.  The cycle begins with 0 V on the buried rf electrode.  The top 
electrode is biased with +2 kV.  At high electron density, the electric field is shielded and E/N 
is reduced.  ………………… 
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Figure 3.3 Electron density in the plume (log scale, cm-3) in the gap at different phases of 
the rf driving voltage of 1.4 kV during a 40 ns (25 MHz) cycle. 
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Figure 3.4 Electron temperature (eV), electron impact ionization sources from bulk 
electrons (Se) and ionization source by sheath accelerated secondary electrons (Ssec) in the 
mDBD cavity during a 40 ns (25 MHz) cycle for Vrf = 1.4 kV and extraction voltage of 2 kV.  
The ionization sources are plotted on a log scale. 
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Figure 3.5 The total charge density, charge density due to positive ions and charge density 
due to electrons and negative ions (log scale cm-3) in the mDBD cavity at different times 
during a 25 MHz cycle for Vrf = 1.4 kV and extraction voltage of 2 kV.  Positive ions 
alternately strike the cathode-like negatively charged dielectric or discharge electrode and 
release secondary electrons for re-ignition. 
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Figure 3.6 Density of excited states N2(C) and N2(A,B) in the mDBD cavity (log scale, 
cm-3) at different times during a 25 MHz cycle for Vrf = 1.4 kV and extraction voltage of 2 
kV.  UV photons emitted from excited states of nitrogen produce secondary electrons which 
aid in re-ignition of the plasma especially at low frequency. 
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Figure 3.7 The surface charge density σS (dash-dotted, cm-3), surface voltage on the 
dielectric (solid, V) and voltage on the buried rf electrodes (dashed, V) are shown for 
frequencies of a) 25, b) 5 and c) 2.5 MHz at site A (see Fig. 3.1) for Vrf = 1.4 kV and extraction 
voltage of 2 kV.  Oscillations in charging of the dielectric appear at low frequencies. 
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Figure 3.8 mDBD characteristic are shown at site B as a function of time (see Fig. 3.1) 
for Vrf = 1.4 kV and extraction voltage of 2 kV for a) 25 MHz and b) 2.5 MHz:  rf voltage 
(dashed, V), local potential (dash-dotted, V) and E/N (solid, Td), electron density (dash-
dotted, cm-3) and electron ionizations source Se and Ssec (solid and dotted, cm-3s-1).   
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Figure 3.9 Current collection on the top electrode.  a) Experimentally observed triple 
current pulsed obtained at 2.5 MHz and b) simulation results in a similar sandwich mDBD 
device for equivalent biasing. 
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Figure 3.10 Charge density at site D and current collection on the top electrode at 25 MHz.  
a) Electron (solid, cm-3) and positive ion density (dash, cm-3) at site D for top bias voltage Vtop 
= 2, 1.5 and 1 kV.  b) Electron current collected by the top biased electrode for Vtop = 2, 1.5 
and 1 kV.  A pulsed modulated dc current is collected at Vtop = 2 kV. 
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Figure 3.11 Charge collection as a function of time for 25 MHz to 2.5 MHz (1.4 kV rf bias) 
and a 2 kV biased collection electrode.  a) Charge collected per pulse and b) time integrated 
charge collection.  Charge collection per pulse is relatively independent of frequency until 
positive charge builds up in the gap at the higher frequencies, which then transitions to a 
modulated dc discharge.  
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Figure 3.12 Charge collection as a function of time for 25 MHz at Vrf = 1.4, 2.8, 4.2 and 5.6 
kV and a 2 kV biased collection electrode.   
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Figure 3.13 Charge collection as a function of time for 25 MHz at Vrf = 1.4, 2.8, 4.2 and 5.6 
kV and a 2 kV biased collection electrode.   
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Figure 3.14 Surface properties at site A and gas phase properties at site B as a function of 
time at 25 MHz for Vrf = 1.4, 2.8, 4.2 and 5.6 kV.  The location is noted in each frame.  a) 
Surface charge density and applied rf voltage, b) surface potential, c) E/N, d) electron density, 
e) ionization by bulk electrons and f) ionization by secondary electrons  
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Figure 3.15 Charge collection/pulse and total charge collected by the top 2 kV biased 
electrode as a function of time for 25 MHz with ε/ε0=20, 10, 5 and 2 with 1.4 kV on the rf 
electrode.  The charge per pulse is normalized by εr= ε/ε0.   
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Figure 3.16 Surface properties at site A and gas phase properties at sites B and C as a function 
of time at 25 MHz for ε/ε0=20, 10, 5 and 2.  The location is noted in each frame.  a) Surface 
charge density normalized by εr and rf voltage, b) surface potential, c) E/N, d) electron density, 
e) ionization by bulk electrons and f) ionization by secondary electrons. 
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 CHARACTERISTIC OF A RF MICRO-DIELECTRIC 

BARRIER DISCHARGE ARRAY 

 

4.1 Introduction 

Arrays of micro-DBDs (or mDBDs) having dimensions of tens of μm operating at 

atmospheric pressure using rf voltages have been developed for large area-selective surface 

treatment and production of photons, excited states or charge species.[1-11]  mDBD characteristics 

are determined by the geometry of the aperture, material, repetition rate and pulse shape, the latter 

two of which can in principle be independently controlled for each aperture.[7,10-17]  One such 

example of independent control of light emitting mDBDs is the commercial plasma display panel 

(PDP). 

mDBD arrays also hold potential for inexpensive latent image production in electrographic 

printing.  Leoni et al developed an electrographic apparatus consisting of arrays of individually 

addressable mDBDs from which plumes of electron current only tens of microns in diameter are 

extracted for forming a latent image.[18]  The mDBD is typically operated in nitrogen or in inert 

gas to avoid the production of negative ions which reduces the current extraction.  These electron 

beams deposit charge on the dielectric imaging surface.  The charge is then either directly the basis 

of adhering toner particles to the surface or is transferred to another surface.  During formation of 

the latent negative charge previously deposited on the imaging surface can repel the incoming 

electron current, thereby spreading and increasing the diameter of the initially narrow electron 

beam extracted from the mDBD.  This divergence reduces the quality of the latent image.[18,19]   

100 
 



In addition to the interaction between mDBDs through dielectric charging, plumes of 

charge extracted from the mDBD apertures can also directly interact with each other or with the 

remnants of charge from previous discharge pulses.  Although not a topic of this chapter, 

combinations of indirect interactions with charged surfaces and direct interaction between DBD 

plumes, either attraction or repulsion, can result in self-organized patterns.[20-25]   

In this chapter, I discuss results from a numerical investigation of a 3-aperture array of 

mDBDs sustained in atmospheric pressure N2 with an O2 impurity.  The model geometry of mDBD 

aperture, shown in Fig. 4.1, is patterned after those developed for electrographic printing.[18]  I 

found that the divergence of the extracted current can be delayed by increasing the permittivity of 

the target surface to produce a longer charging time.  Accumulation of positive charge in the gap 

on a pulse-to-pulse basis helps to extract electrons from the mDBD cavity.  With higher oxygen 

impurity content, electron attachment begins to dominate which reduces the extraction field and 

ultimately reduces the collected surface charge density.  At rf frequencies up to 25 MHz, charge 

extraction is limited by the duration of the cathodic portion of the cycle.  At lower frequencies 

having periods longer than the charging time of the intervening dielectric, electron current is 

limited by charging of the dielectric.  The model used in this chapter is described in Sec. 4.2 and 

followed by a discussion of N2 plasma dynamics sustained in a single mDBD in Sec. 4.3.  In Sec. 

4.4, characteristic of mDBD arrays are discussed, and Sec. 4.5 contains our concluding remarks. 

 

4.2 Description of the Model and Reaction Mechanism 

In this chapter, a two-dimensional, fluid hydrodynamic simulation platform, nonPDPSIM, 

was used and is described elsewhere [26,27] and Chapter 2 in detail.  The mDBD is a sandwich of 

alternating electrodes and dielectrics.  (See Fig. 4.1.)  An rf biased metal electrode is embedded in 
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a dielectric substrate (relative permittivity εr = ε/ε0 = 4.3) 50 μm below the dielectric surface.  This 

rf electrode is biased with -2 kV DC and a 1.4 kV AC potential with frequencies up to 25 MHz.  

A negatively DC biased discharge electrode (-2 kV) 25 μm thick sits on the top of the dielectric 

layer (19 μm thick and εr = 20) and has a 35 μm opening which exposes the underlying dielectric.  

A less-negatively-DC-biased screen electrode, 40 μm thick, biased with -1950 V is separated from 

the discharge electrode by another dielectric (25 μm thick and εr= 20) and acts as an anode switch 

to extract charges and narrow the current beam.  The extracted electron current is accelerated 

towards a grounded electrode covered with a 25 μm dielectric sheet with εr up to 12.5.  This 

dielectric-covered grounded electrode is separated from the screen electrode by 410 μm gap.  The 

lateral spacing between the mDBDs apertures are tens to hundreds of microns.  The side boundaries 

in the simulation are grounded and placed far from the mDBDs apertures using a progressively 

coarser mesh so that the potential calculation will not be affected by the side boundaries.  The top 

and bottom boundaries are also grounded, as in actual device.  All the dielectrics used in the model 

are perfect insulator – the conductivity is zero and the surface charges on dielectrics are laterally 

immobile.   

In this chapter, the mDBD is filled with N2 at 1 atm with a small amount of O2 serving as 

an impurity at room temperature 300 K.  This selection of gas mixture reflects that used in 

experiments.  The ratio of N2/O2 varies from 99.99/0.01 to 90/10.  A reduced reaction mechanism 

contains a subset of the reactions described in [28,29] to limit the magnitude of calculation.  The 

reduced reaction mechanism includes N2, N2(v), N2
*, N2

**, N2
***, N2

+, N4
+, N, N*, N+, O2, O2

*, O2
+, 

O2
-, O3, O-, O, O*, O+ and electrons.  The states N2

* and N2
** are nominally N2(A,B) and N2(C) 

though the latter is treated as a lumped state including transitions higher than N2(C), and N2
*** is 

nominally N2(a').  The discharge is initiated by placing a plasma cloud 100 μm in radius centered 
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in each mDBD cavity with a peak electron density of 1012 cm-3.  Many rf cycles are then computed 

until either quasi-steady state conditions are achieved or long term trends are discernable.  Each 

aperture in an actual array is circular which would require a 3-dimensional model to resolve.  Our 

model, being 2-d, resolves side-by-side apertures as slots in a Cartesian geometry. 

 

4.3 mDBD Plasma Properties 

The plasma dynamics of a single aperture mDBD in similar geometry have been previously 

investigated [27], and so the fundamental properties of single mDBDs will be briefly discussed.  

The operating conditions are 1 atm N2 /O2 = 99.99/0.01 at 300 K.  This impurity reflects the actual 

purity of gas used in experiments and provides an unambiguous source of photoionization.  As 

shown in Fig. 4.1, the rf electrodes are biased with -2 kV DC plus 1.4 kV rf voltage at 25 MHz.  

The discharge and screen electrodes are biased with -2 kV and -1950 V, respectively.  The 

grounded electrode is about 400 μm above the screen electrodes, and is covered by a dielectric 

sheet 25 μm thick with relative permittivity ε/ε0 = 12.5.  The complete computational domain 

extends 1.45 mm on either side of the center mDBD.  The time evolution of single aperture electron 

density and electric potential during an rf period is shown in Fig. 4.2(a).  Electron density, electric 

field and potential in the mDBD cavity are shown in Fig. 4.2(b) at t = 13.5 ns when top electrode 

begins to extract the electron plume.  The applied rf voltage is shown in Fig. 4.2(c).  The cycle 

begins with -2 kV on the rf electrode at t = 0 ns, which is same as the voltage on the discharge 

electrode.  However, due to the positive charge deposited on the bottom dielectric on previous rf 

cycles, electrons are attracted toward the dielectric and begin to neutralize the positive charge.  By 

t = 15 ns, the negative charge collected on the bottom dielectric is sufficiently large that electric 

field vectors are reversed and an electron flux starts to escape from the mDBD cavity.  The screen 
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electrode with a potential 50V higher than discharge electrode acts as an anode switch to help 

extract and focus the electron current.  The re-entrant electric potential contours in the opening of 

the screen electrode, as shown in Fig. 4.2(b), aids in focusing the plume when extracting the 

electrons towards the top dielectrics.   

As the rf voltage decreases to -2 kV at t  = 20 ns, there is no net external rf field applied to 

the cavity while a large negative potential remains on the bottom dielectric due to the previously 

collected negative charges.  The electron plume is then expelled out of the mDBD cavity towards 

the top dielectric covered extraction electrode, which negatively charges the sheet.  At the same 

time, the plasma is re-ignited in the cavity due to the avalanche of remaining residual electrons 

and secondary electron emission from the surface in the cavity produced by UV/VUV photons and 

ions.  The current extraction is then enhanced as the rf voltage becomes slightly more negative at 

t = 25 ns.  When the rf voltage becomes more positive (or less negative) at t = 34 ns, a sufficiently 

large amount of positive charge is collected on the bottom dielectric that the negative charge is 

neutralized, the voltage drop is reduced and electron plume begins to diminish.  The cycle then 

repeats.  The electron density in the mDBD cavity is on the order of 3 × 1015 cm-3, and is of order 

5 × 1011 cm-3 adjacent to the top dielectric.  As the electron current beam negatively charges the 

top dielectric, a negative surface potential is produced and electric potential lines are trapped into 

the dielectric target as shown in Fig. 4.2(a) at t = 40 ns. 

 

4.4 Small Arrays of mDBDs 

The plasma plumes extracted from the mDBD cavities interact with the top collection 

surface by successively charging the surface on a pulse by pulse basis.  This charges the 

capacitance of the dielectric sheet which produces a negative surface potential, which results in 
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additional lines of electrical potential being in the dielectric.  The acceleration produced by the 

resulting electric fields opposes the incoming plume of electrons.  If the charging is spatially 

uniform, the collection of current from the electron plumes will uniformly decrease.  If the 

charging of the surface is spatially non-uniform or the surface is in motion, the retarding electric 

fields may perturb the incidence plumes in a non-uniform or asymmetric manner. 

 To investigate these dynamics, an array of three mDBDs were simulated with a spacing of 

300 μm as shown in Fig. 4.3.  The dielectric constant of the top dielectric is ε/ε0 = 1.25, purposely 

chosen to be small to accelerate the consequences of charging.  The voltage on the three rf 

electrodes are in phase with a -2 kV dc bias and a 1.4 kV rf bias at 25 MHz (period of 40 ns).  The 

resulting electron density is shown at the peak of the electron extraction for the 1st, 3rd, 5th, 7th and 

12th pulse.  The electrons extracted from the mDBDs are incident onto the top dielectric target.  

For the initial portion of the first pulse, the potential lines in the gap are essentially uniform and 

parallel.  The unperturbed electron plumes are accelerated vertically upward to the dielectric and 

begin to charge the surface, which traps the potential lines in the dielectric sheet.  Meanwhile, 

these three electron plumes are below the space charge limit of affecting their neighbors and so 

are extracted independently.  By 20 ns, there is enough charging of the dielectric in spots above 

the mDBD apertures that horizontal components of the electric field are generated, which in turn 

begin to warp outwards the two outside electron plumes.  The center plume, seeing symmetric 

charging, remains nearly vertical.  

 As the pulsing continues, negative charging of the dielectric target continues and the 

retarding potential increases.  By the 3rd pulse (100 ns), the potential at the dielectric surface is as 

large as –1160 V, half of the initial extraction potential.  The potential is non-uniform and varies 

by 300 V laterally across the surface.  With an additional two pulses (180 ns), the negative charging 
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and negative potential of the dielectric is sufficiently large that the center electron plume is 

diminished in intensity and the rate of surface charging decrease.  Electric fields with components 

parallel to the dielectric are produced by the charging and deflect the outer plumes in the direction 

of largest electric field which is now towards the uncharged dielectric on the boundary.  By the 

12th pulse (460 ns) the center plume is extinguished as the potential difference between the top 

dielectric and the focusing screen electrode is insufficient to extract additional charge, and the 

outer plumes are deflected by more than the spacing between the mDBDs.  This deflection in 

printing, diminishes the quality of the latent image and poses a challenge to achieving high 

resolution image.[18,19]   

 Since the onset of the divergence of the current is inversely proportional to the charging 

time (or the capacitance) of the top dielectric, a larger capacitance of the top dielectric having a 

larger charging time should delay the divergence.  This expectation is illustrated in Fig. 4.4 where 

electron plumes and electric potential contours are shown for the same conditions as Fig. 4.3 except 

for the top surface having a larger dielectric constant ε/ε0 = 12.5.  With the larger permittivity and 

capacitance of the top dielectric, obtaining a given surface potential requires more charge 

accumulation, and so divergence of the current begins later.  The plumes from each of the three 

mDBDs maintain their vertical trajectories through the first 10 pulses, and only at t = 460 ns, are 

the electron plumes beginning to become warped. 

 Although the majority of ionization occurs in the mDBD cavity, some ionization does 

occur as the electron plume transits the gap.  Due to low mobility of the positive ions (dominantly 

N4
+ produced by 3-body reactions of the originally produced, N2

+) and their slow drift towards the 

negatively biased screen electrode, ions tend to accumulate in the gap pulse to pulse.  The total 

charge density and electric potential are shown in Fig. 4.5 for several rf pulses.  A net positive 
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charge density of 7.5 × 1011 cm-3 is initially produced after the first few rf cycles in the path of the 

electron plume.  The more mobile electrons are accelerated out of the gap on a pulse –by–pulse 

basis leaving the positive ions that were produced in the gap.  As the electron plumes are diverted 

by charging of the dielectric, electron impact ionization in the gap occurs in the deflected path and 

the accumulation of positive charge follows the trajectories of the plumes.  The positive charge 

density that remains in the gap is insufficient to significantly perturb the potential lines, as the 

potential is dominantly determined by the dielectric charging.  (For these conditions, the negative 

ion density in the gap is small, 8.5 × 109 cm-3.)  However, the net positive charge density is large 

enough, 3.7 × 1012 cm-3, near the apertures in the screen electrodes to produce a small concavity 

of the potential contours.  An auxiliary average electric field is produced to aid in current extraction 

and help focus the electron beam due to this concavity of the electric potential lines.  The 

accumulated positive ion density near the apertures and the extracting electric field increase with 

successive discharge pulses.  As a result, the peak electron density increases at early pulses before 

the surface charge on top dielectric reduces the extracting field.      

 With the small impurity of O2 in the current gas mixture N2/O2 = 99.99/0.01, the influence 

of negative ions is inconsequential.  With increasing O2 content, however, electron attachment and 

negative ions begin to play more important roles.  The total charge density, surface potential and 

time integrated electron flux after 11 pulses (450 ns) for O2 fractions of 0.01% to 10% are shown 

in Fig. 4.6.  The net negative charge density ( ) and net positive charge density ( ) shown in 

Fig. 4.6 are separated by a white contour line.  Below 0.1% O2, positive ions (mainly N4
+) 

accumulate close to the apertures and produce an average extracting electric field, while negative 

ions (mainly O-) slowly drift to the top anode-like dielectric.  The fractional electron loss due to 

attachment is small, and the mDBDs behave as though they are electro-positive plasma.  The 

−ρ +ρ
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concave electric potential lines close to the screen electrode help focus the electron beam.   

 When the gas mixture increases to 1% and 10% O2, electron attachment becomes a 

significant electron loss mechanism and more negative ions are then produced along the electron 

extraction path.  The increasing negative ion density reduces the extracting electric field by 

reducing the net positive charge density.  By an O2 fraction of 10%, the net negative charge extends 

nearly to the opening in the screen electrode and the previously concave electric potential lines are 

reversed to be convex.  The convex electric potential lines produced by net negative charges now 

defocus the extracted electron beam.  The time integrated electron flux on the top dielectric is then 

proportionately smaller and more uniform, as shown in Fig. 4.6(f).  A consequence of the decrease 

in integrated electron current is a decrease in the surface potential on the dielectric.  The surface 

potential on the top dielectric for O2 fractions of 0.01% to 10% after 11 pulses is shown in Fig. 

4.6(e).  With an O2 fraction < 0.1%, the negative peak surface potential remains near -900 V.  

When the O2 fraction increases to 10%, the surface potential drops to -500 V.  

 The O2 impurity also provides volumetric photoionization source (Sph).  By increasing the 

O2 fraction from 0.01% to 10%, Sph increases from 2.5 × 1017 to 8.2 × 1019 cm-3s-1, which is still 

small compared to electron impact ionization sources.  Having said that, this small photoionization 

source is fairly uniform throughout the volume of the mDBD cavity, and so serves to seed electrons 

that eventually avalanche in locally large electric fields.  In the same way, UV photons from long 

lived excited states continuously seed secondary electrons by photoemission at dielectric and 

electrode surfaces which helps to facilitate the reignition of plasma.  

 The uniformity and charging of the dielectric are functions of the mDBD spacing, and this 

can be used to advantage depending on the application.  For example, if uniform charging over 

large areas is desired without modulation, more closely spaced mDBDs can be used.  If truly 
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independent charging of spots on the dielectric is desired, more widely spaced mDBDs can be 

used.  For example, the electron density and electric potential for successive pulses are shown in 

Fig. 4.7(a)-(f) for a spacing between the mDBDs of 100 μm.  The electron density and potential 

after the 12th pulse are shown in Fig. 4.7(g) for a spacing of 600 μm.  The surface potentials after 

the 12th pulse (460 ns) for spacings between the mDBDs of 100, 300 and 600 μm are shown in Fig. 

4.7(h).  The repetition rate is 25 MHz (40 ns cycle).  With the 100 μm spacing, the electron density 

in the plume adjacent to the top surface initially increases (first 3 pulses) prior to the negative 

charging of the surface beginning to dominate and deflecting the electron current.  Decreasing the 

aperture spacing does not change the current extraction process.  However, the three electron 

plumes do merge to form a single current beam as the interactions between the electron beams are 

not significant.  Due to the merging of the plumes, the electron current is larger in amplitude and 

broadened in width, producing a less modulated and larger (more negative) surface potential.  The 

peak surface potential reaches -1,060 V on the 12th pulse due to the merged electron plumes.  As 

the spacing is increased to 600 μm, the charging of the dielectric by the electron plumes become 

more independent and the individual electron plumes are not significantly perturbed by the 

charging produced by its neighbor.  The peak surface potential produced by each individual mDBD 

plume drops to -750 V.            

 Since divergence of the current occurs within 100’s ns and is dependent on capacitance 

(charging time) of the top dielectric and accumulation of ions in the gap, the charging process 

should be sensitive to rf driving frequency.  The electron density and electric potential after four 

rf cycles for frequencies of 2.5 MHz to 25 MHz are shown in Fig. 4.8.  As a point of reference, the 

peak electron density during each rf cycle is shown in Fig. 4.4. 

9(a) for site A adjacent to target dielectric (see Fig. 4.1(b) for location).  The electric potential on 
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the surface of the top dielectric at the same time (t = 500 ns) and the same pulse (4th) is shown in 

Fig. 4.9(b) and 4.9(c).  Since the top dielectric is treated here as perfect insulator, this potential 

profile reflects the charged particle fluence (cm-2 – flux integrated over time) along the surface.  In 

reality, it is likely that UV photon illumination of the top dielectric does provide some surface 

conductivity that might smear out the collected charge and so the potential.  At high frequency, 

charge extraction is limited by the shorter rf cycle, while positive ions accumulating in the gap 

cannot respond to such high frequency.  These ions produce a positive space charge in the gap and 

help extract electrons out of the mDBD cavity.  As a result, the peak electron density at site A 

initially increases due to this accumulation of positive ions which produces a larger extraction field.  

The electron density then decreases with increasing number of pulses as a result of negative 

charging of the dielectric.    

 With lower frequencies and longer cycles, more electrons are extracted out of the mDBD 

cavity into the plume during early cycles.  The plume then charges the dielectric which retards the 

subsequent electron flux.  Also, there is sufficient time for positive ions in the gap to drift 

downward to be collected by the screen and discharge electrodes, thereby reducing the 

accumulation of positive charge in the gap which would otherwise enhance electron extraction.  

Consequently, the peak electron density at site A decreases with increasing number of rf pulses.  

The charge collection on the top dielectric surface at given time tends to be larger at higher 

frequencies.  The electric potential on the top dielectric at t = 500 ns is more negative at high 

frequency simply due to there being more charge collection as a result of the higher repetition rate.  

However, more charge is collected at lower frequency for given rf pulse.  As a result, the surface 

potential is about half as negative at 25 MHz compared to 2.5 MHz.  The larger current collection 

per pulse at lower frequency is shown by the more negative potential after 4 pulses compared to 
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high frequency (-1000 V at 2.5 MHz compared to -400 V at 25 MHz).  Although a non-uniform 

voltage can be generated by the surface charges on the top dielectric sheet, the resulting electric 

field parallel to the surface is typically not large enough to induce a surface discharge. 

 The ability to independently control the rf bias to each mDBD aperture provides the 

opportunity to tune the profile of the surface charging.  This tuning capability is demonstrated by 

the electron density, electric potential and surface potential shown in Fig. 4.10 for an mDBD 

spacing of 300 μm.  Electron density and potential are shown for the 1st, 3rd, 5th, 7th and 12th pulse.  

The applied voltage of the center rf electrode is delayed by 2 cycles (80 ns) compared to the outer 

electrodes that are excited in phase.  The surface potential after 500 ns (12 pulses) for the center-

delayed operation is compared to fully synchronized mDBDs in Fig. 4.10(f).  The charging process 

of center delayed case is essentially the same as that of the in-synch case.  However with the center 

plume delayed by 2 pulses, there is proportionately less charge extracted from the mDBD and so 

less surface charging.  With fully synched mDBDs, the surface potential is largest (most negative) 

above the center mDBD, a result of the outer plumes being deflected and there being contributions 

to surface charging at the center by the adjacent plumes.  By delaying the center mDBD, there is 

both less deflection of the outer plumes and less charging by the center plumes.  The end result is 

that the peak surface potential above the center mDBD is reduced by 100 V (less negative), in this 

case becoming slightly less negative than the other peaks.   

 

4.5 Concluding Remarks 

mDBD arrays are being developed for high definition surface treatment and charging.  

Using results from a 2-dimensional model, I investigated the plasma dynamics of a small array of 

mDBDs sustained in 1 atm N2/O2 mixtures, and the interaction between electron plumes through 
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charging of the target dielectric.  After electrons are produced in the mDBD cavities and extracted 

onto the target dielectric surface, a negative potential is generated which deflects the incoming 

electron plumes.  This divergence can be mitigated by increasing the dielectric constant (or 

charging time) of the target surface.  Positive ions which accumulate in the gap also help extract 

charges by increasing the average extraction field.  With increasing oxygen fraction, electron 

attachment processes begin to dominate.  As a result, the electron flux extracted from mDBD 

cavity is additionally hindered by negative ion charge accumulation in the gap.  Collection of 

charge on the top dielectric is then reduced with increasing oxygen content.   

 Uniformity of charging is a sensitive function of mDBD spacing.  Reducing the mDBD 

spacing merges plumes and reduces modulation of the charging.  Increasing spacing between the 

mDBD reduces the deformation of the plumes by the charging produced by adjacent plumes.  The 

surface potential profiles can be tuned by independently controlling the timing and number of 

pulses from the individual mDBDs apertures.  The plumes also indirectly interact with each other 

through the space charge they produce in the gap.  This is, however, a cumulative affect.  Due to 

the large extracting electric field and high mobility of electrons, the space charge provided by the 

electron density in the gap during a single pulse is not large enough to perturb the neighboring 

plume.  However, the accumulation of low mobility ionic charge (either positive or negative) 

during successive pulses can produce sufficient space charge to perturb neighboring plumes.  In 

this sense, more closely spaced mDBDs will be more perturbing to their neighbors.  In all cases, 

charging of the dielectric and its associated electric fields ultimately dominate in perturbing the 

plume.  

In summary, this chapter focuses on independently controlled mDBD arrays, and 

interaction between the electron plumes and target dielectric.  The electron plumes extracted from 
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the mDBD arrays charge the dielectric and form latent images on the selected locations.  If the 

surface charging and current extraction are not carefully controlled, the blooming effect becomes 

dominant which broadens the beam size, warps the electron plumes and reduces the resolution.  

This blooming effect can be mitigated by increasing the dielectric constant of the target surface.  

The capability of being independently controlled is also demonstrated by simulation.    

 

 

. 
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4.6 Figures  

 

Figure 4.1 Schematic of the mDBD device.  (a) A single mDBD single aperture.  (b) 
Multiple mDBD apertures and top grounded electrode covered with dielectric.    
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Figure 4.2 Electron current extraction produced by an rf voltage of 25 MHz.  (a) Time 
evolution of electron density (color flood, cm-3) and electric potential (contour lines, V) during 
a 40 ns rf period.  The electron density is plotted on a log-scale over 4 decades (2 × 1011 – 2 × 
1015 cm-3).  (b) Electron density (color flood, cm-3), electric field (vector, V-cm-1) and potential 
(contour lines, V) at t = 13.5 ns when electrons are extracted.   (c) rf driving voltage.  The 
instantaneous electric field vectors show only the orientation but not the magnitude of the field 
which help extract and focus the electron beam. 
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Figure 4.3 mDBD array with a spacing of 300 μm and target dielectric constant of ε/ε0 = 
1.25.  Electron density (color flood, cm-3) and electric potential (contour lines, V) at the peak 
of electron current extraction for the (a) 1st, (b) 3rd, (c) 5th, (d) 7th and (e) 12th rf pulse.  The 
electron density is plotted on a log-scale over 4 decades (2 × 1011 – 2 × 1015 cm-3).  The electron 
plume is largely warped toward less charged dielectric by the 12th pulse. 
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Figure 4.4 mDBD array with spacing of 300 μm and larger target dielectric constant ε/ε0 = 
12.5.  Electron density (color flood, cm-3) and electric potential (contour lines, V) at the peak 
of electron current extraction for  the (a) 1st, (b) 3rd, (c) 5th, (d) 7th and (e) 12th rf pulse.  The 
electron density is plotted on a log-scale over 4 decades (2 × 1011 – 2 × 1015 cm-3).  Divergence 
of the current begins later due to the longer charging time of target dielectric.   
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Figure 4.5 Total charge density (color flood, cm-3) and electric potential (contour lines, V) 
for the (a) 1st, (b) 3rd, (c) 5th, (d) 7th and (e) 11th rf pulse.  The charge density is plotted on a log-
scale over 5 decades (1010 – 1015 cm-3). Electrons in the plumes are accelerated towards the top 
dielectric and only heavy positive ions are left in the gap.  A concavity in the potential is 
produced by the net positive charge in the gap which helps to extract and focus the electron 
current beam before surface charging become dominant. 
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Figure 4.6 Net negative (ρ-) and positive (ρ+) total charge density (color floods cm-3) and 
electric potential (contour lines, V) in a gap filled with N2/O2 mixtures with O2 content of (a) 
0.01%, (b) 0.1 %, (c) 1% and (d) 10%.  The charge density is plotted on a log-scale over 5 
decades (1010 – 1015 cm-3) after the 12 pulse.  A white line separates regions of positive and 
negative charge.  The resulting (e) potential (V) on the top dielectric surface and (f) time 
integrated electron flux (cm-2) decrease with increasing O2 content.      
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Figure 4.7 A more uniform current beam with higher intensity can be achieved by reducing 
the mDBD spacing.  Electron density (color flood, cm-3) and electric potential (contour lines, 
V) for (a) 1st, (b) 3rd, (c) 5th, (d) 7th, (e) 9th and (f) 12th rf pulse.  The electron density is plotted 
on a log-scale over 4 decades (2 × 1011 – 2 × 1015 cm-3).  (g)  Electron density and potential 
after the 12th pulse for a 600 μm spacing.  (h) Surface potential on top dielectric after the 12th 
pulse for spacing of 100 μm, 300 μm and 600 μm between the microdischarge cavities.  A less 
modulated and higher peak potential results from merging of the closely spaced electron 
plumes.         
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Figure 4.8 Electron density (color flood, cm-3) and electric potential (contour lines, V) 
during peak current extraction on the 4th rf cycle for frequencies of (a) 25 MHz, (b) 10 MHz, 
(c) 6 MHz and (d) 2.5 MHz.  The electron density is plotted on a log-scale over 5 decades (1011 
– 1016 cm-3). More negative voltage and charge density result on the top dielectric at lower 
frequency due to the longer rf period. 
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Figure 4.9 Plasma and charging characteristics for different rf frequencies. (a) Peak electron 
density (cm-3) at site A (see Fig. 4.1) as a function of pulse number, (b) surface potential (V) at 
t = 500 ns and (c) surface potential after the 4th pulse.  At higher frequencies, the peak electron 
density initially increases due to enhancements in the extracting field produced by positive ion 
accumulation.  The electron density then decreases due to charging of the top dielectric.  At 
lower frequencies, positive ions are collected by the screen electrode and the electron density 
decreases with increasing pulses.   
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Figure 4.10 Independently controlled mDBDs demonstrated by delaying starting rf voltage 
on the center microdischarge by 2 rf periods.  Electron density (color flood, cm-3) and electric 
potential (contour lines, V) for (a) 1st, (b) 3rd, (c) 5th, (d) 7th and (e) 12th rf pulse.  The electron 
density is plotted on a log-scale over 4 decades (2 × 1011 – 2 × 1015 cm-3).  (f) Surface potential 
on the top dielectric at t = 500 ns (12th pulse) for in-phase and center delayed rf excitation.  
Tuning of the surface potential is enabled by controlling the onset of individual 
microdischarges, in this case a decrease in the potential of the center peak 100 V due to the two 
period delay.         
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 CHARGING OF MOVING SURFACES BY CORONA 

DISCHARGES SUSTAINED IN AIR 

 

5.1 Introduction 

Atmospheric pressure plasmas are widely employed to functionalize surfaces due to their 

short treatment times, room temperature operation, and ability to operate without vacuum facilities.  

One such application is improvement in wettability of surfaces.[1-5]  By creating new surface 

functional groups on commodity polymer sheets, metallic foils and paper, surface tension (or 

surface energy, dyne/cm) can be increased to improve the bonding abilities with adhesives, 

coatings and solvents.  As a result, the printing quality and lamination strength can be improved.  

For example, commodity hydrocarbon polymeric materials such as polyethylene [1,5] and 

polypropylene [2-5] are hydrophobic and relatively chemically inert due to their low surface 

energy.  A common process to improve wettability and adhesion of inks to these materials is 

through the use of oxygen containing electric discharges to affix oxygen to their surfaces.  More 

recent developments in the use of atmospheric pressure discharges to change surface properties 

are in the biomedical field.  Sterilization of biomedical devices and the creation of reactive surface 

functionalities to optimize the biocompatibility have been proven to benefit from atmospheric 

pressure plasmas.[6-9]   

A natural outcome of atmospheric pressure discharges in contact with dielectric or low 

conductivity surfaces is charging of those surfaces, and so these discharges are frequently used in 

electrophotographic (EP) printing processes, as discussed in Sec. 1.7.[10-17]  For example, corona 
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discharges in air are used to sensitize the surface of the photoconductor (PC) in EP printing by 

electrically charging the surface to an optimum potential.[12-17]  Although corona discharges 

sustained in the air for surface charging do have challenges (e.g., high voltage source, long term 

deterioration of the PC), the simplicity, high charging efficiency and low cost of corona charging 

devices have motivated continued research into optimizing their performance.   

The polarity of the corona discharges used for surface charging of PCs depends on the 

characteristics of the underlying photoconductive coating and toner particles.  For example, 

amorphous selenium coatings perform better when they are charged positively, whereas zinc 

oxide-resign coatings require negative charging.[13,16,17]  Although there are some variation 

among coatings, negative coronas are most often used for surface charging of PCs.  In a typical 

negative corona discharge, one or more thin metal wires or straight metal blade electrodes are 

negatively biased to 100s V dc plus a few kV of ac voltage.[10,11,15]  The wires are separated 

from the PC by gaps ranging from hundreds of microns to a few centimeters.  The underlying 

dielectric PC layer is in contact with the ground plane.  A large electric field is produced around 

the wire or tip of the blade by geometric enhancement and the discharge is initialized when free 

electrons are accelerated by these strong electric fields to trigger an avalanche.[17,18]  This process 

in negative coronas is particularly sensitive to surface roughness and defects in the electrode that 

produce additional electric field enhancement or electric field emission of electrons.  In negative 

coronas, the net drift of electrons and negative ions is towards the underlying PC surface which 

charges the capacitance of the surface which in turn reduces the electric field in the gap.  The 

surface charging terminates the discharge as long as the discharge is only sustained by a dc (or 

quasi-dc in a pulsed mode) voltage.  The PC charging process functionally operates as a dielectric 

barrier discharge (DBD).  
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Corona discharges are used in at least two of the process steps of EP printing – the charging 

and transfer steps.[13-16]  In the charging step, the PC surface is uniformly charged using a corona 

discharge produced by a corotron or scorotron, as shown in Fig. 5.1 (a).  The corotron consists of 

parallel corona wires situated above the PC plate and below a biased electrode.  A scorotron is 

similar to a corotron with the addition of a grid of parallel wires between the corona wires and the 

PC surface.  After the PC surface is charged and the light-induced latent image is formed on this 

surface, charged toner particles electrically adhere to the latent image.  Another corona device is 

then used to charge the back of the paper to optimize adhesion of toner particles during the transfer 

of particles from the PC to the paper.  In both of these process steps, the underlying dielectric 

surface moves with speeds of hundreds of cm/s during their charging process with residence times 

of hundreds of microseconds underneath the corona wire.  The discharge itself may last for only 

hundreds of ns.  As a result, a non-uniform charge patterns may result due to the interaction 

between the corona discharge and the moving surface.  

In this chapter, results from a computational investigation of a dc blade corona discharge 

sustained in atmospheric pressure dry air, charging both stationary and moving dielectric surfaces 

in a DBD configuration, as shown in Fig. 5.1 (b) and (c) are discussed.  For the voltages 

investigated, I found that the corona discharge is initially sustained by electron impact ionization 

in the bulk plasma and by secondary electron emission from the cathode.  When the underlying 

dielectric surface charges and voltage is removed from the gap, the electron impact sources from 

the bulk plasma diminish and the plasma is then sustained by ionization by sheath accelerated 

secondary electrons from the electrode.  Eventually the plasma extinguishes by charging of the 

surface in a DBD-like manner.  When the dielectric surface moves, the previously charged surface 

translates away from the corona electrode and is replaced by uncharged surface.  This results in an 

128 
 



increase in voltage drop across the gap between the corona electrode and the approaching 

uncharged surface on only one side of the electrode.  This rebound in voltage across the gap results 

in a re-ignition of the discharge.  The charging uniformity is sensitive to the material properties of 

the dielectric sheet, and the subsequent re-ignition of the discharge is sensitive to the previous 

charging cycle.  An oscillatory charging pattern is predicted.   

The model used in this chapter is described in Sec. 5.2 and followed by a discussion of 

plasma dynamics of corona and surface charging on a stationary surface in Sec. 5.3.  The 

characteristics of charging of a moving surface are discussed in Sec. 5.4 followed by our 

concluding remarks in Sec. 5.5. 

 

5.2 Description of the Model and Reaction Mechanism 

The model used in this chapter, nonPDPSIM, is described in detail in Chapter 2 and Refs. 

[19,20].  To enable investigation of plasma-surface interactions during charging with moving 

surfaces, an idealized corona device has been modeled, as shown in Fig. 5.1(b) and (c).  The device 

consists of a metal cathode corona blade biased with negative dc voltage up to a few kV.  The 

metal blade has a thickness of 100 μm and a height of a few mm.  The radius of curvature of the 

blade tip is 50 μm.  An underlying dielectric sheet (100 μm thick and εr = ε/ε0 = 5) is separated 

from the corona tip by a 200 μm gap in the base case.  This dielectric target (intended to represent 

paper or a photoconductor layer in EP printing) serves as a perfect insulator (the conductivity is 

zero) so the surface charges are laterally immobile on the dielectric sheet.  The PC is in contact 

with the grounded electrode and is initially uncharged.  The mesh consists of about 12,800 

computational nodes of which about 9,000 are in the plasma zone.  The finest mesh spacing is 9 

μm in the gap between the corona tip and dielectric sheet.  The lateral side boundaries in the 
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simulation are placed far from the corona wire so that the potential calculation will not be affected.  

Although corona wires are typically used in arrays in EP applications, I investigated a single corona 

source using Cartesian geometry to study possibly asymmetric plasma-surface interactions on 

stationary and moving surfaces. 

The moving surface was computationally addressed in the following manner.  The 

numerical mesh points on top of the surface in contact with the plasma are chosen to be evenly 

spaced.  These mesh points are identified during code initialization and sifted into an array based 

on horizontal position.  The surface is moved every ∆t =∆x/v s, where ∆x is the mesh spacing on 

the surface and v is the horizontal speed of the surface.  Assuming that the surface is moving right-

to-left, motion of the surface consists of translating the properties of the mesh point (e.g., chemical 

composition, surface charge density) one location to the left.  The properties of the leftmost mesh 

point are translated out of the computational domain and no longer affect the simulation.  The 

properties of the rightmost mesh point are set to the initial or prescribed conditions, which in this 

case is a zero surface charge density. 

The gas is 1 atm of dry air and the gas temperature is held constant at 300 K.  Due to the 

magnitude of the calculation, I use a reduced reaction mechanism containing a subset of the 

reactions described in Refs. [21,22] to minimize the computation time.  The reduced reaction 

mechanism includes N2, N2(v), N2
*, N2

**, N2
***, N2

+, N4
+, N, N*, N+, O2, O2(1∆), O2

+, O2
-, O3, O-, 

O, O(1D), O+ and electrons.  The states N2
* and N2

** are nominally N2(A,B) and N2(C) though the 

latter is treated as a lumped state including transitions higher than N2(C).  N2
*** is nominally N2(a') 

though it is also a lumped state accounting for higher levels.  The discharge is initiated by placing 

an electrically neutral electron-ion cloud with a peak density of 1012 cm-3 and radius of 200 μm 

around the corona tip.  The time step is typically 5 × 10-12 s. 
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5.3 Corona Properties and Charging of a Stationary Surface 

The characteristics of the blade corona discharge and charging of the underlying stationary 

dielectric surface will first be discussed.  The corona was first biased to -3 kV and the dielectric 

constant of the underlying insulating sheet in contact with ground was εr = 5.  The time evolution 

of the electron density and electric potential during the surface charging process is shown in Fig. 

5.2.  The electron impact ionization sources by bulk electrons Se and beam-like secondary electrons 

Ssec are shown in Fig. 5.3.  Due to the high gap-averaged electric field of 136 kV/cm (E/N ≈ 556 

Td, 1 Td = 10-17 V-cm2) between the corona tip and dielectric surface, and the geometrically 

enhanced electric field at the corona tip, an electron avalanche occurs within a few ns.  Ionization 

is provided by lower energy bulk electrons, and by electrons emitted from the cathode blade 

through ion and photon secondary emission and accelerated by the large sheath potential.  Before 

the dielectric is charged and while the full applied potential is dropped across the gap (0.1 ns in 

Fig. 5.3), the rate of ionization directly underneath the blade corona by bulk electrons, 1023 - 1024 

cm-3-s-1, dominates.  Ionization from secondary electrons is generally 2 orders of magnitude 

smaller due to the small ion flux at this time producing a low rate of secondary emission, and the 

lack of a fully formed sheath at the cathode.  Electrons drifting towards the underlying dielectric 

sheet negatively charge the surface.  As the plasma channel becomes conductive and the dielectric 

charges, the electric potential is shielded by the bulk plasma while electric potential lines are 

trapped in the dielectric due to the surface charging.  At t = 2 ns, plasma densities of up to 1015 cm-

3 are generated at the corona tip which fully form the sheath.  The electron density at mid-gap is 

on the order of 2 × 1013 cm-3.  

As the discharge proceeds, the charging of the lower surface reduces the voltage drop and 
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E/N between the corona blade and the dielectric, and so decreases the rate of electron impact 

ionization from bulk plasma electrons in the gap beneath the tip.  However, electron impact 

ionization from sheath accelerated secondary electrons still occurs due to UV photon and positive 

ion bombardment of the negatively biased corona blade.  At t = 3 ns, this ionization source at the 

tip, Ssec, is up to 3 × 1024 cm-3-s-1.  At this stage, the corona discharge is primarily sustained by 

secondary electron ionization processes.   

 The voltage drop in the gap directly underneath the corona tip is reduced by charging of 

the capacitance of the PC.  However, there is still a large potential drop between the corona blade 

and the uncharged surface of the PC to the left and right of the centrally charged PC surface.  The 

conductive plasma in the gap results in the majority of the voltage between the corona tip and the 

uncharged dielectric being dropped across the edge of the plasma and the uncharged PC surface.  

The result is a surface ionization wave (SIW) at the edge of the plasma which propagates laterally 

outwards with a speed of 5 × 106 cm-s-1.  The E/N at the surface in the SIW is 330 Td, which 

supports an ionization rate of 9 × 1021 cm-3-s-1.  As the SIW propagates, the underlying PC is 

charged.  The spreading of the discharge on the surface is symmetric as there is uncharged 

dielectric on both sides of the blade and this produces SIWs propagating in both directions.  By 60 

ns, the SIWs dissipate as the finite voltage drop in the plasma (and distance from the corona blade) 

reduces the E/N in the SIW below the self-sustaining value.  At this time, the dielectric surface 

underneath the corona blade is fully charged to a distance of 0.1 cm on either side of the blade.  

This charging process is similar to those occurring in conventional DBDs.[23-26]   

 The time evolution of the surface charge density and electric potential on the PC surface is 

shown in Fig. 5.2(b).  (The surface charge densities are slightly smoothed to reduce the noise in 

the charging due to the randomness of the Monte Carlo simulation used for secondary electrons.)  
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The PC surface is rapidly charged during the first 20 ns.  The charging during the first 5 ns is 

directly under the corona blade by ionization in the bulk plasma above the PC.  After the first 5 ns, 

charging is largely due to the propagation of the oppositely directed SIWs.  Charging largely 

terminates by about 40 ns and the SIWs have completely dissipated by 60 ns.  At this time, the 

discharge terminates. The peak voltage on the PC surface underneath the corona tip after the 

termination of the discharge is -2.7 kV for an initial corona bias voltage of -3.0 kV. 

 Strictly speaking, conventional negative corona discharges are sustained by the high 

electric field near the surface of a small radius-of-curvature electrode due to geometrical field 

enhancement.[27-28]  This geometrical field enhancement decreases with distance from the tip of 

the corona blade (or wire) and local ionization rates scale exponentially with the local electric field.  

At a critical distance from the tip, the electric field is sufficiently small that electron impact 

ionization is reduced below self-sustaining.  At that point in an attaching gas such as air, the 

electrons are consumed by formation of negative ions and current continuity is then carried by drift 

of the negative ions.[27-30]   

 In this particular geometry and in most EP applications of corona, the PC surface is still 

within the high electric field region, and so the transition to a classical corona discharge where 

current is dominantly carried by negative ions does not occur.  The proximity of the ionization by 

sheath phenomena is therefore important.  For example, the electron density and electric potential 

with and without ionization by sheath accelerated secondary electrons, Ssec, are shown in Fig. 

5.4(a).  At t = 30 ns before the discharge terminates, Ssec provides a higher ionization source and 

electron density in the gap which helps maintain the discharge and charges the underlying 

dielectric more negatively.  The surface charge density and potential on the PC after the discharge 

has been terminated for both cases are shown in Fig. 5.4(b).  With Ssec, the surface potential reaches 
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–2.7 kV and charging extends to ±1 mm.  Without Ssec, the surface potential reaches only –2.2 kV 

and charging extends only to ±0.75 mm.  The ionization resulting from secondary electron 

emission enables the discharge to be sustained for a longer time and so more fully charge the PC. 

 Although the PC surface is close to the corona tip and current continuity is provided 

primarily by drift of electrons in geometry, negative ions are still formed during the charging 

process– O- through dissociative attachment to O2 and direct attachment to form O2
-.  The time 

evolution of electron density, total negative ion density, electric potential, surface charge density 

and potential on PC surface is shown in Fig. 5.5.  The sequence begins at 50 ns when the discharge 

has nearly terminated due to surface charging and the reduction in voltage across the gap.  The low 

electron temperature in the gap, 0.5 eV is well below the self-sustaining value and so attachment 

to O2 dominates.  At 50 ns, the electron density of 7 × 1012 cm-3 begins to decay through 

recombination, attachment and drift onto the PC surface.  At this time, the peak negative ion 

density is 1.6 × 1013 cm-3 near the corona tip.  By 200 ns, the electron density has decayed to 3 × 

109 cm-3 while the negative ion density is 3 × 1012 cm-3.  At this time, the recombining plasma 

consists mostly of negative and positive ions.  This plasma then slowly decays dominantly by ion-

ion recombination.  The surface charge density and surface potential change very little from 50 ns 

to later times in spite of the large remaining ion density.  First, the electric field in the gap is small 

and so there is little drift of ions to the surface.  Second, the drift of ions to the surface is largely 

ambipolar.  That is, the negative and positive ions drift at the same rate.  As a result, there is not a 

net current to the surface to further charge the PC.   

 During the active discharge, the peak value of volumetric photoionization source Sph is on 

the order of 1019 cm-3-s-1, which is small compared to electron impact ionization sources.  Having 

said that, this photoionization source and photoemission produced by UV photons from long-lived 
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excited states continuously provide seed secondary electrons at the dielectric and electrode 

surfaces.  Subsequent avalanche by these secondary electrons then help maintain the discharge 

through either sheath accelerated secondary electrons at the cathode or by helping to maintain the 

SIW.  For example, the electron density and electric potential with and without volumetric 

photoionization and photoemission from the corona wire and PC surface during surface charging 

(at t = 30 ns) are shown in Fig. 5.6.  The surface charge density and potential on the PC after the 

discharge is terminated are also shown in Fig. 5.6.  Although the contribution of Sph is small and 

the change in peak electron density is small, the plasma density is more uniform when including 

the photoionization.  Due to the somewhat lower impedance of the discharge due to photoemission 

at the cathode surface, the final potential and surface charge density with Sph are nominally higher 

than for discharges without Sph. 

 After initiation of the discharge, the applied voltage is divided between the sheath at the 

electrode, the plasma column, the avalanche front, the surface sheath capacitance after the 

discharge strikes the surface, and the capacitance of the PC as the surface charges.  For a given 

surface charge, the voltage drop in the dielectric ΔVd is inversely proportional to the capacitance 

(per unit area) of the PC, εrε0/d.  By controlling the capacitance of the PC, the sheath voltage, 

electron impact ionization rates and so spreading of the plasma along the surface can be controlled 

and optimized.  For example, the electron density and electric potential at t = 60 ns before the 

discharge terminates, and the surface charge density and potential on PC surface after the 

termination of discharge are shown in Fig. 5.7 for PCs having εr = 5, 10, and 20.  For the PC having 

a large capacitance, the voltage across the gap remains large for a longer period of time since the 

higher capacitance of the PC requires a longer time to charge.  As a result, the discharge for εr = 5 

at t = 60 ns has a smaller electron density and begins to terminate earlier than the discharge on a 
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PC surface with εr = 20.  At this time, the maximum electron density at mid-gap is 5.9 × 1012 cm-3 

for εr = 20 compared to 5 × 1011 cm-3 for εr = 5.  Since the terminal electrical potential of the surface 

after charging is approximately the same for all εr, the maximum surface charge is then in 

proportion to εr.  The larger capacitance requiring more current to charge the PC results in a longer 

discharge pulse (a longer RC time constant) and produces a higher electron density.  However, the 

spatial extent of the surface charge is a weak function of εr.  The SIW that laterally extends charge 

on the surface is driven, in part, by the horizontal component of the electric field at the surface of 

the PC.  Although the surface charge is larger with larger εr, the surface potential is nearly the 

same.  As a result, the horizontal component of the electric field that drives the SIW is a weak 

function of εr.  

 

5.4 Charging of a Moving Surface 

When a corona discharge is used for continuous surface charging, the underlying dielectric 

is in motion during the charging process.  For a stationary uncharged target, the charging process 

by a dc (or quasi-dc) corona discharge behaves like a DBD.  The charging of the surface is 

symmetric on either side of the corona tip.  Surface charging reduces the electric field in the gap 

which then terminates the discharge.  In the case of a moving surface, as the dielectric surface 

underlying the discharge moves, surface charge is translated away from the corona electrode on 

one side while uncharged dielectric translates towards the corona electrode on the other side.  As 

a result, the incoming uncharged (or partially charged) surface restores the voltage drop in the gap 

that had previously been reduced by surface charging.  This restoration of voltage may then re-

ignite the plasma which then charges the fresh incoming surface.   
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At atmospheric pressure, the plasma formation and decay times can be as short as tens of 

ns, whereas the residence time of the moving charged surface before the plasma is reignited may 

be a few hundred microseconds.  The surface moves in an almost quasi-static fashion which is 

much slower than the spreading of the plasma.  As a result, it is difficult to address the surface 

moving at its actual speed in the model while also simulating plasma processes having sub-ns 

timescales with nearly many ps timesteps.  Given that the plasma does terminate due to surface 

charging, it may not be necessary to address the entire time while the surface charge is moving 

after the discharge terminates and before it reignites.  To address the continuous motion of the PC 

the following technique was used in the first cases investigated. 

The PC surface was assumed to enter from the right and exit to the left in Fig. 5.8.  The 

plasma is first simulated until charging of the dielectric terminates the discharge, producing a 

symmetric charging pattern.  This surface charge density is then translated to the left in 100 µm 

increments, which brings in uncharged PC from the right while extending the region of charged 

surface to the left.  This results in an asymmetric electrical potential distribution, as shown in Fig. 

5.8(a).  This asymmetric potential compresses contours of electric potential into the cathode and 

produces a progressively larger electric field at the corona electrode on the side of the electrode 

facing the incoming charged surface.  The translation of the surface continues until the electric 

field is large enough to re-ignite the plasma, which occurs here for a shift of the surface to the left 

of 500 µm.  This re-ignition process, illustrated by the time evolution of electron density, electric 

potential, and ionization sources from bulk and secondary electrons, is shown in Fig. 5.8(b).  This 

sequence is for the second discharge which follows translation of the first symmetrically charged 

surface to the left.  Time t = 0 corresponds to when the second discharge re-ignites, approximately 

the time shown in Fig. 5.8(a).  At t = 40 ns, ionization for the second discharge is dominated by 

137 
 



sheath processes (both bulk and secondary emission) at or near the cathode, and by restarting of 

the SIW.  The ionization sources are 1021 - 1022 cm-3-s-1.  The electron source in the bulk plasma 

is generally comparable with the source from secondary electron ionization at the corona tip.   

The reignited discharge is asymmetric, with plasma preferentially produced on the side of 

the corona electrode facing the uncharged dielectric where the voltage drop across the gap is the 

largest.  Note that at the time of re-ignition, there is a small secondary electron ionization source 

at the surface of the PC.  These secondary electrons are produced largely by photo-electron 

emission at a time that the charging of the surface produces a larger horizontal component of the 

electric field than a vertical component, which would otherwise accelerate the secondary electrons 

back into the surface.  These secondary electrons are then accelerated parallel to the surface for 

about 100 – 200 µm prior to impacting the PC.  A small ionization source then results.   

At t = 50 ns, the second discharge is fully developed.  The plasma density is generally 

smaller (1012 cm-3 at mid-gap) compared to the first discharge pulse (1013 cm-3 at mid-gap) as the 

bulk electric field is smaller for at least two reasons.  First, re-ignition occurs when the voltage 

drop across the gap is less than the initial charging voltage due to the prior charging of the dielectric.  

Second, the effective gap length for the first pulse is the geometrical vertical distance between the 

tip of the corona bar and the surface of the PC, 200 µm, which produces a gap-averaged E/N= 556 

Td.  For re-ignition, the effective gap length is along the electric field line originating on the 

cathode at the site of the maximum electric field and ending on the uncharged surface entering 

from the right.  This distance is 300 µm at re-ignition, producing a gap averaged E/N= 270 Td.  

After the second discharge pulse fully develops, the conductive plasma at the side of the corona 

tip shields the electric field and diminishes the electron source in the bulk plasma.  The re-ignition 

is then dominated by the secondary electron ionization source, Ssec.  As the SIW charges one side 
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of the surface and reduces the electric field in the gap, the second discharge pulse then starts to 

extinguish.  This general sequence of events is repeated as fresh, uncharged PC surface is translated 

towards the corona electrode from the right. 

The total surface charge density and surface potential on the PC surface before and after 

re-ignition of secondary discharge are shown in Fig. 5.9 while initial surface charge density is 

shifted up to 700 µm.  The total surface charge density and surface potential on the dielectric after 

5 discharge pulses (4 re-ignitions) are shown in Fig. 5.10.  In general, the discharge cannot be 

reignited until the surface is translated to the left by at least 300 - 500 µm.  With each successive 

re-ignition, the surface is incrementally charged over another 100-200 µm.  The maximum surface 

charge incrementally produced with each re-ignition is about the same compared to the initial pulse, 

with perhaps a small increase.  Although there is a bit of statistical noise in the charging, there is 

also a periodic maximum in the surface charge density and potential.  In a continuous charging 

process, the following basic sequence is repeated: ignition, surface charging, SIW, discharge 

termination, motion of the surface, restoration of gap voltage and re-ignition.  The requirement for 

re-ignition is to have a critically large E/N, which produces a rapid avalanche which in turn charges 

the surface.  The resulting SIW extends the charging beyond the point that the surface must reach 

to create the critical E/N.  This process of re-ignition and SIW naturally produces a periodic 

charging pattern.    

The pattern of the surface potential and its peak value are expected to be sensitive to the 

design of corona device (speed of surface movement, voltage waveform and dielectric materials) 

since the re-ignition strongly depends on feedback from the previous surface charging cycle.  For 

purposes of demonstration, the time evolution of electron density and electric potential of a corona 

discharge onto a continuously fast-moving surface are shown in Fig. 5.11(a).  The corresponding 
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total charge density and electric potential on the moving surface are shown in Fig. 5.11(b).  The 

blade corona is biased with -3 kV dc and the underlying dielectric moves from right to left at a 

speed that is commensurate with the spreading of the plasma by the SIW.  The moving dielectric 

continuously translates uncharged fresh surface towards the blade corona.  When the voltage drops 

between the blade corona and uncharged surface rebounds, an electron avalanche occurs, and the 

corona discharge is then reignited.  The charged surface translating to the left terminates the 

discharge on the left side of the electrode while the corona blade continuously sees the fresh surface 

underneath the tip as the surface enters from the right.  The end result is that the discharge 

continuously and uniformly charges the underlying dielectric, and the surface charging is 

asymmetric with respect to the corona electrode but more uniform.  The oscillatory charging 

pattern on the surface results from discrete re-ignition events which in turn result from the rapid 

charging of the surface and the relatively slow moving surface.  A more uniform surface charging 

might be obtained by using a gas mixture with long lived excited states capable of continuously 

emitting UV/VUV photons which produce photoemission on a fast moving surface.  This 

photoemission will help maintain the SIW in a continuous manner. 

In addition to controlling the capacitance of PC dielectric, the peak surface potential can 

also be adjusted by varying the gap distance between corona tip and the underlying surface.  The 

electron density and electric potential during the charging process at t = 20 ns are shown in Fig. 

5.12(a) for varying the applied dc voltage (Va) and gap size (dg) while keeping the ratio constant 

(Va/dg = 15 kV/mm).  Va varies from -1.5 kV to -4.5 kV for gaps of 100 µm to 300 µm.  The 

surface charge density and surface potential after the discharge has terminated are shown in Fig. 

5.12(b).  Although the gap averaged E/N is the same in all cases, the geometrically enhanced 

electric field significantly increases with increased dc voltage on the corona tip.  As a result, the 
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higher electric field produced at the corona tip biased with -4.5 kV with the larger gap produces a 

more intense ionization source, a higher electron density and wider region of surface charging.  

The larger voltage also requires more current and a longer time to charge the surface of the PC 

which provides more time for the SIW to propagate to charge more surface.  Surface charging with 

the lower voltage and smaller gap is more confined. 

  

5.5 Concluding Remarks 

Corona discharges sustained in atmospheric pressure air are important in many EP printing 

technologies to charge the underlying dielectric PC surfaces.  I computationally investigated the 

behavior of an idealized corona discharge and surface charging when the PC surface is stationary 

and in motion.  It was found that electron impact ionization by electrons in the bulk plasma 

initialize the discharge underneath the corona tip, however prior to the discharge terminating, 

ionization is provided dominantly by sheath accelerated secondary electrons.  Electrons negatively 

charge the underlying dielectric, trapping electric potential lines in the dielectric and removing 

voltage from the gap.  The electrons carry the vast majority of current to the dielectric in this 

particular geometry with little contribution from negative ions.  On a stationary dielectric, a surface 

ionization wave spreads outwards from the corona tip on both sides and symmetrically charges the 

surface, while the discharge is sustained by the sheath accelerated secondary electrons.  The 

discharge is terminated when the electric field for the SIW is reduced by virtue of the distance the 

SIW has traveled from the corona electrode.  When the dielectric surface is in motion, surface 

charges and the potential they produce are translated away from the corona wire.  The voltage 

between the corona electrode and the incoming uncharged surface rebounds, and an electron 

avalanche is re-ignited on one side of the blade.  The corona discharge process then repeats to form 
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an oscillatory charging pattern.  The charging pattern can be made less oscillatory by using a fast-

moving surface or a gas mixture capable of continuously providing seed electrons to maintain the 

discharge. 

In summary, atmospheric pressure corona discharges used in EP printing technologies are 

investigated in this chapter.  The charging process on a moving surface and plasma dynamics are 

discussed in detail.  A periodic charging pattern observed in the experiments produced by moving 

surface are also predicted in the simulation results.  Although the speed of moving surface in the 

simulation is a few hundred times faster compared with the moving speed in real printing 

applications, the modeling still improves our understanding of the underlying physics.    
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5.6 Figures

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 5.1 Schematics of corona devices.  (a) A, B and C are 3-wire corotron, scorotron and 
shielded corotron, respectively.[16]  (b) Entire device and full computational domain of 
negatively dc-biased blade corona discussed in this chapter. (c) Enlargement of corona electrode 
and underlying ground electrode covered with a dielectric photoconductor (PC). 
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Figure 5.2 Charging of PC surface by a dc biased corona blade.  (a) Time evolution of 
electron density (color flood, cm-3) and electric potential (contour lines, V) produced by a -3 
kV dc biased corona blade.  (b) Time evolution of surface charge density (solid, cm-3) and 
surface voltage (dashed, V) on the PC dielectric.  The electron density is plotted on a log-scale 
over 4 decades (1011 – 1015 cm-3).  The discharge is terminated by surface charging.  
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Figure 5.3 Electron impact ionization sources from bulk electrons (Se), and ionization 
source by sheath accelerated secondary electrons (Ssec) at different times after initiation of the 
discharge.  The ionization sources are plotted on a log scale over 3 decades.  The charging of 
the surface far from electrode results from a surface ionization wave. ………………….. 
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Figure 5.4 Ionization by secondary electrons Ssec helps maintain the corona discharge.  (a) 
Electron density (color flood, cm-3) and electric potential (contour lines, V) produced by a -3 
kV dc biased wire corona at t = 30 ns with and without ionization sources by sheath accelerated 
secondary electrons (Ssec).  (b) Surface charge density (solid, cm-3) and surface voltage (dashed, 
V) with and without Ssec showing the contribution of secondary electrons. 
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Figure 5.5 Residual electrons and negative ions produce nominal charging of the PC after 
the discharge is terminated.  (a) Time evolution of electron and negative ion density (color 
flood, cm-3), and electric potential (contour lines, V) at t = 50, 200, 400 and 600 ns.  (b) Time 
evolution of surface charge density (solid, cm-3) and surface voltage (dashed, V) at t = 50, 200 
and 600 ns.  ………………… 
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Figure 5.6 Plasma properties produced by a -3 kV dc biased wire corona at t = 30 ns with 
and without volumetric photoionization source Sph and photoemission from the corona and PC 
surface.  (a) Electron density (color flood, cm-3) and electric potential (contour lines, V).  (b) 
Surface charge density (solid, cm-3) and surface voltage (dashed, V). 
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Figure 5.7 Plasma properties produced by a -3 kV dc biased wire electrode at t = 60 ns on 
dielectric sheets with relative permittivities εr of 5, 10, and 20.  (a) Electron density (color 
flood, cm-3) and electric potential (contour lines, V).  (b) Surface charge density (solid, cm-3) 
and surface voltage (dashed, V) on the dielectric surface after termination of the discharge. 
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Figure 5.8 Time evolution of electron density (flood, cm-3), ionization sources from bulk 
electrons Se, ionization by secondary electrons Ssec (flood, cm-3-s-1) and electric potential 
(contour lines, V) produced during reignition after the first symmetric surface charge density 
was shifted to the left by 500 µm.  
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Figure 5.9 The total surface charge density (solid, cm-3) and surface potential (dashed, V) 
before and after re-ignition of the secondary discharge with a shift of initial surface charge 
density by (a) 500 µm, (b) 600 µm, and (c) 700 µm.   
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Figure 5.10 The total charge density (solid, cm-3) and surface potential (dashed, V) on the 
dielectric surface after 5 discharge pulses (4 re-ignitions).   
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Figure 5.11 Time evolution of (a) electron density (flood, cm-3) and electric potential 
(contour lines, V) and (b) total surface charge density (solid, cm-3) and surface potential 
(dashed, V) on a rapidly moving surface  The discharge is continuously re-ignited by the rapidly 
moving surface in a quasi-dc manner.   
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Figure 5.12 Time evolution of (a) electron density (flood, cm-3) and electric potential 
(contour lines, V) during the charging process at t = 20 ns and (b) total surface charge density 
(solid, cm-3) and surface potential (dashed, V) after the termination of discharge for Va/dg = -
1.5 kV/0.1 mm, -3 kV/0.2 mm and -4.5 kV/0.3 mm, where Va is the applied dc voltage and dg 
is the gap size. ………………… 
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 ATMOSPHERIC PRESSURE MICRODISCHARGES 

PRODUCED BY CONDUCTIVE CHARGE ROLLER 

 

6.1 Introduction 

Atmospheric pressure microdischarges have been frequently used in area-selective surface 

patterning [1–3] and surface charging in printing technologies.[4–9]  For example, a radio 

frequency (rf)-excited micro-dielectric barrier discharge (or mDBD) array having dimensions of 

tens of micrometers operating at atmospheric pressure has been developed for high-resolution 

electrostatic latent image production.[10–13].  This mDBD configuration used in the electrostatic 

image transfer process to generate the charged particle beams is referred to as a charge deposition 

print head, or “print head.”  The print head is the most essential component in an ionographic 

image device.  

As the atmospheric pressure discharge is directly in contact with dielectric material, the 

plasma charges the dielectric surface and removes the voltage, and then the plasma extinguishes 

due to the charging of the dielectric surface.  This charging process is widely used in 

electrophotographic (EP) printing technologies.[4–9]  A Corona discharger is one of the main 

implementations used in a print engine to sensitize the surface of the photoconductor (PC) by 

electrically charging the PC surface to a predetermined potential.  A corona discharger has the 

advantages of a simple structure, a high charging efficiency, and the low cost of a charging device. 

It also has drawbacks that impose challenges on the printing industry, such as high electric power 

consumption, the mass production of ozone and NOx along with the corona charging, and the 
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damage to the charging element (e.g., photoconductor)—the last of which causes image 

deterioration.[5–9]   

In addition to the corona discharge, a contact charging method, wherein a rotatable charge 

roller (CR) is in contact with a rotating photoconductive drum, has been studied for surface 

charging in the EP community.[14–17]  The schematic of a charge roller and photoconductor drum 

is shown in Fig. 6.1(a).  A typical charge roller consists of a biased metal shaft covered by a few 

layers of alternative conductive and resistive elastomer coatings to prevent arcing.  These resistive 

and semi-insulating layers that are a hundred microns thick have conductivities of σ = 10-10 − 10-4 

Ω-1 cm-1.[4,15]  The photoconductive (PC) dielectric layer is in contact with a ground electrode.  

As a negative dc voltage of a few hundred to a few thousand volts is externally applied to the metal 

shaft and charge roller, a large electric field is produced in the converging air gap between the 

charge roller and the photoconductor.  Free electrons in the space produced by cosmic radiation or 

electric field current emission from the CR surface are accelerated by the strong electric field in 

the gap to trigger an avalanche, and so form microdischarges.  These microplasmas charge the PC 

surfaces and trap the potential lines in the PC dielectric.  If the CR is biased with a dc or quasi-dc 

voltage in a pulse mode, the plasma is then terminated by the surface charging as in a DBD manner.   

Although a contact charge roller is capable of operating with a lower voltage source and of 

generating less ozone, a non-uniform periodic surface charging pattern (shown in Fig. 6.1(b)) and 

an “alligator pattern”[17] produced by a rotatable CR on a moving (rotating) PC surface degrade 

the quality of the printing image.  A number of causes are found to produce the undesirable non-

uniformity of the charge pattern.  For example, a highly resistive CR, or a CR with local non-

uniform conductivity that stems from electrical irregularity in the elastomer layer, is found to 

reduce the local voltage drop in the gap, which prematurely terminates the discharge and charging 
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process.  As a result, the surface is charged non-uniformly.  These charging failures can be 

alleviated by optimizing the voltage waveform applied to the CR shaft or by using proper materials 

for the elastic layers and surface layers on the CR.[4,15,17]  Having said that, the non-uniform 

charging pattern on a moving PC surface is still a major charging failure, which has motivated 

continued investigation into further understanding and improving the performance.            

In this chapter, I present the results of a numerical investigation into microdischarges 

sustained in atmospheric pressure dry air, and the charging of both stationary and moving dielectric 

PC surfaces by a conductive charge roller in a print engine.  The devices of interest are shown in 

Fig. 6.1.  For surface charging of a stationary PC surface, I found that the photoemission and 

photoionization are significant in the initiation and charging process.  After field emission current 

is locally injected from an emission node, microplasmas are initiated at the smaller gap by remote 

seed electrons.  The plasma laterally spreads outward on the PC surface, charging the underlying 

dielectric.  The discharges are then terminated by the surface charging.  Without the remote 

electrons, the microplasmas are directly initiated underneath the field emission node if the local 

E/N is sufficient.  As the surface is in motion, the rapidly moving PC surface brings in an 

uncharged surface and re-establishes the E/N in the gap.  The rebound in E/N then re-ignites the 

microplasma.  With a high applied voltage and a rapidly moving surface, self-pulsing 

microplasmas are produced to form a periodic surface charging pattern.  At certain operation 

conditions, a Townsend-like discharge can be produced, and a uniform surface charging is 

achieved.              

The model used in this chapter is described in Sec. 6.2 and followed by a discussion of 

plasma dynamics in the gap and charging of a stationary PC surface in Sec. 6.3.  The characteristics 
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of the charging of a moving surface are discussed in Sec. 6.4, and Sec. 6.5 contains our concluding 

remarks. 

 

6.2 Description of the Model and Reaction Mechanism 

 The charge roller and the charging of PC dielectric in a DBD manner were computationally 

investigated using the modelling platform, nonPDPSIM.  The model is the described in Chapter 2 

and Refs. [12,18].  Sources of electrons from the surface include field-enhanced thermionic 

emission and secondary electrons produced by ion and photon fluxes.  The secondary emission 

coefficients used in this chapter were 0.15 for all of the positive ions and up to 0.01 for photon 

flux. 

 To emphasize the dynamics of microplasmas on a stationary PC surface affected by field 

emission current, photoionization, and the conductivity of the charge roller, an idealized device 

has been modeled and shown in Fig. 6.1(c) and Fig. 6.1(d) (the geometry shown in Fig. 6.1(d) is 

vertically expanded by a factor of 2 for clarity).  The device consists of a metal electrode biased 

with negative dc voltage up to a few kV.  The conductive charge roller in the model is treated as a 

dielectric with high conductivity up to 10-2 (Ω-cm )-1.  The photoconductor sheet in contact with 

the charge roller and ground electrode has a thickness of 100 µm and an electrical dielectric 

thickness (d/εr) of 6 µm where d and εr are the thickness and dielectric constant of the 

photoconductor sheet.  This PC dielectric serves as a perfect insulator (the conductivity is zero) so 

that the surface charges on the dielectric sheet are immobile and not neutralized by the conduction 

process (a.k.a. dielectric relaxation).  Plasma is initiated by a field emission current density of 10-

3 A-cm-2 from emission node A, B, or C, which is 85 µm, 135 µm, or 177 µm above the PC surface, 

respectively.  The emission node represents a surface roughness of a few microns on the charge 
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roller.  The mesh consists of approximately 8,000 computational nodes, of which 3,000 nodes are 

in the plasma zone.  The finest mesh spacing is 2 μm in the gap between the emission node and 

underlying PC dielectric sheet. 

 The gas fill is 1 atm of dry air – N2/O2 = 80/20, and the gas temperature is held constant at 

300 K through the simulation.  The gas phase reaction mechanism used in this chapter contains a 

subset of the reactions described in Refs. [19,20] to minimize the computation time.  The species 

included in the reduced reaction mechanism are: N2, N2(v), N2
*, N2

**, N2
***, N2

+, N4
+, N, N*, N+, 

O2, O2(1∆), O2
+, O2

-, O3, O-, O, O(1D), O+, and electrons.  The states N2
* and N2

** are nominally 

N2(A,B) and N2(C), though the latter is treated as a lumped state including transitions higher than 

N2(C), and N2
*** is nominally N2(a').  I assume that the generation of UV/VUV radiation is 

produced by the relaxation of high-lying excited states of N2, and that the photons are absorbed by 

O2. 

 In a real EP printing application, the PC sheet is moving during the charging process, and 

the microplasma is sometimes initiated by background electrons rather than a field emission 

current from surface roughness.  To capture the characteristics of microplasmas on a moving PC 

surface, a more sophisticated geometry is also modeled and shown in Fig. 6.1(e), in which the 

vertical scale is expanded by a factor of 4 for clarity.  In this geometry, the top electrode is biased 

up to a kV, the ground electrode is covered with a PC sheet 18 µm in thickness, and the electrical 

dielectric thickness (d/εr) remains 6 µm.  The gap is filled with 1 atm. dry air, and the reaction 

mechanism used in this geometry remains the same as discussed above, but an additional electron 

source balanced by electron attachment processes is used to continuously generate a peak 

background electron density of 103 cm-3 at electron temperature Te = 0.1 eV.  The microplasma is 

then continuously seeded by the background electrons.  The moving surface was computationally 
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addressed elsewhere [21] in detail.  Briefly, the mesh points on the moving surface in contact with 

the plasma zone are chosen to be evenly spaced.  Assuming the surface enters from the right and 

moves to the left, the moving surface translates the properties of the mesh points (e.g., surface 

charge density in the simulation) to its left every ∆t (∆t = ∆x/v seconds, where ∆x is the mesh 

spacing on the surface and v is the horizontal speed of the moving surface).  The total mesh consists 

of 8,762 computational nodes, of which 3,769 are in the plasma zone.  The finest mesh spacing is 

4 μm in the converging gap between the charge roller and photoconductor sheet.   

  

6.3 Characteristics of Microplasmas and Charging of a Stationary PC Surface 

 The characteristics of the microplasmas initiated by a field emission with current density 

of 10-3 A-cm-2 from emission node A (see Fig. 6.1(d)), which is 85 µm above the stationary PC 

sheet located on a conductive charge roller, will first be discussed.  The top electrode is biased to 

-1.6 kV dc and the conductive charge roller is a dielectric with a high conductivity of 10-2 Ω-1-cm 

-1.  The electrical dielectric thickness of the underlying photoconductor is d/εr = 6 µm, and the 

secondary emission coefficient for photon flux (γp) is 0.01 for this particular case.  The time 

evolution of electron density and electric potential during the charging process is shown in Fig. 

6.2.  The electron impact ionization sources by bulk electrons, Se, and beam-like secondary 

electrons, Ssec, are shown in Fig. 6.3 and Fig. 6.4.  The photoionization source is shown in Fig. 6.5.  

After an initial electron current emitted from node A, an electron avalanche occurs within 1 ns.  

The electrons drift along the high averaged electric field of 176 kV/cm (E/N ≈ 720 Td, 1 Td = 10-

17 V-cm2) underneath the emission node, and the electron density is then multiplied along the 

trajectory of the electron plume with a peak density of 2.7 × 1010 cm-3 at the PC surface.  The 

electron impact ionization source is primarily provided by lower-energy bulk electrons, Se, on the 
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order of 1021 cm-3 s-1.  The ionization source by the beam-like high-energy electrons emitted from 

the CR cathode, Ssec, is generally two orders of magnitude smaller.  It is due to fewer secondary 

electrons being produced, and to the absence of the sheath potential at the cathode.  Fewer 

secondary electrons are produced because of the smaller ion flux and the smaller photon flux.  

Although the peak value of the volumetric photoionization source, Sphoto, is on the order of 1.8 × 

1016 cm-3-s-1, which is small compared to electron impact ionization sources, the photoionization 

source and photoemission provided by UV photons from long-lived excited states provide remote 

seed secondary electrons emitted from the CR surface at the smaller gap between the CR and PC 

sheet where the electric field is higher.  At t = 4 ns, these seed electrons at the small gap start to 

avalanche.  A peak electron density of 7.4 × 1011 cm-3 is produced at a gap of 30 µm with a high 

electric field of 417 kV (E/N ≈ 1660 Td).  The peak ionization source of 1023 cm-3-s-1 is dominated 

by bulk electrons, Se.  By t = 10 ns, plasma densities up to 1015 cm-3 are generated near the nip 

point where the charge roller is in contact with the underlying PC sheet, and this conductive plasma 

fully forms the sheath at the CR cathode.  Meanwhile, a streamer with an electron density of 1014 

cm-3 underneath the emission node A has been developed and propagated upward to the CR 

cathode.     

 As the discharge proceeds, the negative charges drift to the PC surface and remove the 

voltage drop across the gap.  The reduced voltage drop and E/N decrease the ionization rate of the 

electron source from bulk plasma, Se.  However, the electron impact ionization source from the 

beam-like sheath-accelerated high-energy electrons becomes dominant due to the fully developed 

sheath and secondary electrons provided by ion flux and UV photons onto the CR cathode.  At t = 

10 ns, the peak ionization source, Ssec, is as high as 2 × 1024 cm-3-s-1 at the conductive CR cathode.  

 The voltage drop in the gap between the charge roller and photoconductor is reduced by 
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the charging of the PC surface.  Having said that, there is still a large potential drop across the less-

conductive plasma edge between the CR and the uncharged dielectric surface, which triggers a 

surface ionization wave (SIW) propagating along the PC surface.  The SIW spreads outward from 

the avalanche point with a speed of 2 × 106 cm-s-1, and negatively charges the PC surface.  By t = 

20 ns, the outward-propagating SIW and the spreading of microplasmas have already merged with 

the cathode-directed streamer underneath emission node A, and have started to dissipate the 

voltage drop across the plasma edge.  As the voltage drop and E/N at the less conductive plasma 

edge fall below the self-sustaining value, the SIW begins to terminate.                

 By t = 100 ns, the plasma density in the gap rapidly decays below 1010 cm-3 through 

electron-ion recombination, the electron attachment process, or the charging of the underlying PC 

surface.  Part of the residue electrons laterally drift along the electric field (perpendicular to the 

electric potential lines) to their right at a larger gap and accelerated by the high electric field 

produced by the CR and the uncharged PC surface.  At t = 263 ns, after an electron avalanche has 

been re-ignited by the voltage drop between CR and the uncharged underlying dielectric, a thin 

plasma channel is produced with a density of 1012 cm-3.  A peak ionization rate up to 6.5 × 1021 

cm-s-1 is provided by secondary electrons, Ssec, and bulk electrons, Se.  The plasma density in the 

channel is the highest near the surface, which reduces the E/N and ionization rate of Se.  The light 

electrons in the plasma channel rapidly drift to the PC surface and start to charge it negatively, 

while the positive charges are massive and accumulate in the channel.  As a result, the positive 

charge density in the channel generally becomes 1−2 orders of magnitude larger than the electron 

density, which then produces a high electric field and ionization source, Se, of 1021  − 1022 cm-s-1.  

As the discharge proceeds, the intense field and ionization source stimulate a fast cathode-directed 

streamer propagating from the PC surface upward to the CR cathode.  Meanwhile, the negative 
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surface charging pushes the potential lines into the PC dielectric, producing a lateral electric field 

that then starts to warp the plasma channel near the PC surface to the less charged region.  By t = 

273 ns, the cathode-directed streamer has already reached the CR with an electron density up to 

8.5 × 1014 cm-3, ionization is provided by the electron impact ionization source up to 5.7 × 1023 

cm-s-1.  The negative species locally charges the underlying PC dielectric and produces a non-

uniform charging pattern and a potential hump.  After the re-ignition and the charging of the PC 

dielectric, the voltage drop between the CR and uncharged PC surface falls bellows the self-

sustained value, and the microplasma extinguishes. 

 Due to the gradually narrowing gap between the conductive charge roller and PC dielectric, 

the microplasma is triggered at the critical point where the local voltage drop in the gap and the 

rate of ionization is preferable for the remote seed electrons provided by photoionization and 

photoemission to avalanche.  Although the peak value of the volumetric photoionization source, 

Sph, during the active discharge is on the order of 1019 cm-3-s-1, which is small compared to the 

electron impact ionization source, this photoionization source and the photoemission produced by 

UV photons from long-lived excited states continuously provide remote seed electrons at the CR 

and PC surfaces to help trigger avalanches.  The time evolution of surface potential produced by 

microplasmas initiated by current emission from nodes A, B, and C is shown in Fig. 6.6 for the 

secondary emission coefficient for photon flux γp = 0.01, and Fig. 6.7 for γp = 0 (no photoemission).  

The computational nodes in the plasma zone are truncated at x ≈ 0.04 cm, where the corresponding 

gap ≈ 6 µm.  The time evolution of the surface potential on the PC sheet shown in Fig. 6.6(a) 

reflects the corresponding plasma behavior and surface charging shown in Fig. 6.2.  A 

microdischarge is initiated by remote seed electrons provided by photoionization and 

photoemission at a small gap of 30 µm at a critical point, x = 0.08–0.09 cm, producing a potential 
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dip at t = 5 ns.  The microdischarge and SIW spread laterally from the critical point on the PC 

surface with a speed of 106 – 107 cm-s-1, and negatively charge the surface to the terminal voltage 

of 1.2 kV – 1.6 kV.  By t = 12 ns, the streamer initiated by the emission current from node A has 

been fully formed.  This cathode-directed streamer triggers an SIW, which then negatively charges 

the surface until t = 60 ns, when the voltage is dissipated at the plasma edge.  As the SIW is 

terminated, the residue electrons laterally drift to the larger gap and re-ignite the discharge at x = 

0.18 cm at t = 260 ns.  The microplasma spreads outward until the voltage drop between the CR 

and PC sheet falls below the self-sustaining value; the microplasma then starts to extinguish at t = 

290 ns.  A non-uniform charging pattern (a potential hump) is then produced by the re-ignition of 

this sequential pulse at the large gap.   

 Over the range of emission nodes (85 µm, 135 µm, and 177 µm above the PC surface) 

investigated for γp = 0.01, the charging of surface and plasma dynamics do not dramatically change.  

However, as the emission current is injected far from the nip point, the initiation of microplasma 

at the small gap is delayed by tens to hundreds of ns.  This late ignition of microdischarges can be 

attributed to a small photon flux.  Since the amount of remote seed electrons required to trigger 

the microplasma at the critical point (where the ionization rate is favorable) is fixed, the initiation 

process is sensitive to the intensity of photon flux that produces these seed electrons.  As the 

emission current is injected from node C (177 µm above the PC sheet and 2,050 µm away from 

the nip point, as shown in Fig. 6.6(c)), the intensity of photon flux directly or indirectly generated 

by the emission current greatly decays at the critical point.  As a result, the initiation of 

microplasma is delayed until a sufficient amount of seed electrons is produced by the 

photoionization and photoemission.  As γp is reduced to 0, no photoemission electrons are provided 

from the CR and PC surfaces, and the microplasma is triggered only by remote volumetric seed 
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electrons provided by photoionization.  The surface potential on the PC sheet for γp = 0 is shown 

in Fig. 6.7.  The plasma dynamics and surface charging on PC dielectric do not dramatically change 

for γp = 0, and the terminal voltage produced by the plasma initiated by three nodes for γp = 0.01 

and γp = 0 generally remains the same.  Having said that, structures are produced in the local PC 

potential at the initial and final stages, and the surface potential produced by surface charging 

density becomes less uniform due to the lack of photoemission from the surface.  The ignition of 

microplasma for γp = 0 is further delayed since the remote seed electrons are provided only by 

volumetric photoionization, and the critical point is slightly shifted away from the nip point.            

 The microdischarge produced between the conductive charge roller and the dielectric sheet 

is primarily initiated by photoemission or photoionization at the critical point where the local rate 

of ionization and voltage drop are favorable to the electron avalanche.  As a result, for a gas mixture 

capable of producing a high photoionization source, Sph, or for material that produces a large 

photoemission current (high γp), the location of the initial field emission current does not change 

the initiation process; the microplasma is produced at the critical point which then propagates 

outward and negatively charges the underlying dielectric until the voltage drop in the gap falls 

below the self-sustaining value.  For certain gas mixtures or underlying dielectric materials used 

in printing, the photoionization and photoemission are barely produced during the charging process.  

The discharge is then triggered directly underneath the local field emission node if the local E/N 

is sufficient.  The time evolution of electric potential and electron density triggered by a field 

emission current density of 10-3 A-cm-2 from node A is shown in Fig. 6.8, the corresponding 

surface potential on the photoconductive sheet produced by the microdischarge initiated by 

emissions from nodes A, B, and C are shown in Fig. 6.9.  Photoionization and photoemission are 

not considered in these cases.  The surface potential corresponding to charging of PC sheet (in Fig. 
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6.8) is shown in Fig. 6.9(a).  After an electron avalanche occurs underneath node A at x ≈ 0.14 cm, 

a cathode-directed streamer is fully formed and negatively charges the underlying PC surface to -

390 V at t = 13 ns.  By t = 40 ns, the streamer charges and spreads on the PC dielectric surface to 

± 0.02 cm.  As the process proceeds, secondary electrons emitted from the cathodic CR and residue 

electrons in the gap trigger a sequential electron avalanche and microdischarge at x ≈ 0.11 cm at t 

= 48 ns.  The process repeats and the microplasmas spread inward to the nip point by t = 60 ns.  

Meanwhile, residue electrons also drift outward and re-ignite the plasma in the CR-PC gap until 

the voltage drop falls below the self-sustained value.  The initiation and charging process remains 

the same for the emission current from node B.  However, as the current is emitted from node C, 

the ionization rate in the gap of 177 µm is insufficient to trigger an electron avalanche, and no 

remote seed electrons are provided by photoionization and photoemission at the critical point.  As 

a result, the microplasma cannot be triggered and the voltage on the PC surface remains unchanged.                              

 With a high conductivity of 10-2 Ω-1-cm-1 on the current charge roller, the influence of 

variation of local voltage on the charge roller due to a strike of positive ions is inconsequential.  

Within 10-2 – 10-1 ns of dielectric relaxation time (τd = ε/σ, where ε and σ are the permittivity and 

conductivity of the charge roller, respectively), the local voltage disturbance on the CR is 

neutralized by the majority charge carriers (i.e., electrons in this case), and the voltage on the 

charge roller is basically a constant to the microdischarge.  With decreasing conductivity, however, 

the local voltage variation on the CR begins to play more important roles.  The time evolution of 

electron density and electric potential during the charging process for a conductivity of σ = 10-4 Ω-

1-cm-1 on the charge roller is shown in Fig. 6.10.  The microdischarge is initiated by t = 4 ns, the 

upward-moving positive ions impinge onto the CR, reducing the local voltage up to 1 kV according 

to the strike of local ion currents.  Due to the reduced conductivity of σ = 10-4 Ω-1-cm-1, the local 
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variation of voltage on the CR cannot be removed until a few nanoseconds of dielectric relaxation 

time have passed, which is commensurate with a lifetime of microdischarges.  As a result, the 

reducing voltage on the local surface of CR decreases the voltage drop in the gap and the rate of 

ionizations, the microplasma is then terminated earlier, and the local disturbance on the charge 

roller voltage leads to a non-uniform surface charging pattern on the PC surface.  The surface 

potential on the PC dielectric after the discharge has been terminated for a conductivity of σ = 10-

2 and 10-4 Ω-1-cm-1 is shown in Fig. 6.10(b).  With a lower conductivity on the CR, the 

microdischarge behaves in a dielectric barrier discharge (DBD) manner.  The charging on both PC 

and CR surfaces removes the voltages across the gap and terminates the discharges.  As a result, 

the PC surface is charged less negatively and non-uniformly.           

    

6.4 Charging of a Moving Surface 

 When the microdischarges produced by a charge roller are used for continuous surface 

charging, the underlying dielectric is in motion during the charging process.  For a stationary 

surface, the charging process by a conductive dc-biased charge roller behaves in a DBD manner; 

the surface charging reduces the voltage drop and ionization rate in the gap, which then terminates 

the discharge.  When the surface is in motion, the surface charges are translated away by the 

moving dielectric surface on one side, while the uncharged surface is translated toward the charge 

roller on the other side.  The incoming uncharged surface re-establishes the voltage drop in the 

gap, and the rebound in E/N re-ignites the plasma and charges the incoming surface.  As the re-

ignition and charging processes repeat to produce a self-pulsing microdischarge, a periodic 

charging pattern is then produced.    

 The time evolution of the electron density and electric potential of a continuous charging 
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between a conductive charge roller and a moving surface (as shown in Fig. 6.1(e)) is shown in Fig. 

6.11.  For the purpose of demonstration, the surface moves rapidly with a speed commensurate to 

the formation of the microdischarges.  The conductive charge roller with a conductivity of σ = 1 

Ω-1-cm-1 is in contact with an electrode biased with -1 kV dc voltage.  The ground electrode is 

biased with a dielectric sheet 18 µm in thickness, while the electrical dielectric thickness (d/εr) 

remains 6 µm.  The microdischarge is sustained in atmospheric dry air, and a background electron 

density of 103 cm-3 is continuously provided.  By t = t1, an electron avalanche occurs at x ≈ 

0.03−0.06 cm in the gap of 10−20 µm where the voltage drop across the gap and high E/N is 

favorable to initiation of a microplasma.  Within a few nanoseconds, a conductive microdischarge 

is fully formed to negatively charge the surface of the underlying PC dielectric.  These cathode-

directed streamers laterally spread outward on the dielectric seeking out uncharged capacitances 

with a speed of 2 × 106 cm/s, while the uncharged surface moves inward to the nip point.  Due to 

the large voltage drop and the high rate of ionization between the CR and uncharged PC surface, 

a streamer can be ignited and fully developed within 3–5 ns.  By t = t3 when the microdischarge 

propagates to a critical E/N at a larger gap, a longer time is required to re-ignite and transform an 

electron avalanche into a streamer in this large gap, while the surface is still rapidly moving inward 

to provide a fresh, uncharged surface.  As a result, the microdischarge with a plasma density up to 

2.6 × 1014 cm-3 at x ≈ 0.17 cm partially charges the surface and then produces a potential hump 

200–300 µm in width.  After the discharge is terminated by surface charging, this potential hump 

and surface charge density are translated to the left with the moving surface, while the uncharged 

surface moves in.  The fresh surface then restores the E/N in the gap.  At t = t4, the rebound in gap 

potential and residue electrons re-ignite the plasma and produce a second potential hump at x ≈ 

0.18 cm.  As the discharge proceeds, the repetitive process produces a periodic self-pulsing 
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microdischarge at x ≈ 0.17−0.18 cm and forms an oscillatory surface potential with an average 

period of 300–400 µm.  At t = t7, as the periodic potential and surface charges are translated to the 

smaller gap, a high E/N is locally re-established between the CR and less-charged surface.  As a 

result, random microdischarges are produced in the small gap at a less-charged region of 

oscillatory surface potential, and a modulated periodic surface potential is formed on the PC.   

 Due to the high voltage and fast-moving surface, the rebound in voltage in the gap 

periodically produces E/N, and hence a self-pulsing microplasma.  These localized microplasmas 

with an electron density up to 1014 cm-3 are conductive and dominated by the space charges effect.  

A microplasma and electric potential at periodic steady state is shown in Fig. 6.12(a); the 

corresponding spatial distribution of electric potential, electric field, the densities of electrons, and 

positive and negative ions over the cross section of a streamer are shown in Fig. 6.12(b) and 6.12(c).   

The characteristics of the microplasma in the charge roller are similar to those of low-pressure 

glow discharges.  An abrupt voltage drop of 300 V within a few microns in the gap near the CR 

creates an electric field up to 360 kV/cm (E/N ≈ 1470 Td).  In this region, the high voltage drop 

results from the difference between space charge densities; the positive ion density reaches as high 

as 2.9 × 1014 cm-3, while the electron density is generally 2–3 orders of magnitude smaller.  The 

high E/N produces an intense electron impact ionization source of 1022 – 1023 cm-3-s-1, which 

sustains the streamer until the surface charging removes the voltage across the gap.  Followed by 

a cathode fall, the voltage drops gradually along the gap, producing a relatively small E/N of 60–

100 Td.  In this region, electron, negative, and positive charge densities are on the order of 1012 

cm-3, while the density of negative charge species is slightly higher than the positive ion density 

near the anodic dielectric sheet.  After the localized self-pulsing microdischarges periodically 

charge the underlying surface with a high current, the potential humps produced by the surface 
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charging are laterally translated to the left with the moving surface.  The surface potential on the 

PC sheet before surface charging and after a periodic steady state has been reached are shown in 

Fig. 6.12(d) for a rapid moving and slowly moving (5 times slower) surface as examples.  For a 

rapidly moving surface, an average of a 200 to 400 µm period in an oscillatory pattern is formed 

at steady state.  The potential hump is individually produced at x ≈ 0.18–0.2 cm where the local 

residue space charges, the secondary electron emission, and the rebound of local E/N by moving 

surface are self-adjusted to reach a periodic steady state.  These simulation results are consistent 

with experiment observation.[17]  As the surface moves relatively slower, the surface potential 

pattern significantly changes; the period increases to 800 – 1,000 µm, and the amplitude becomes 

smaller.    

 Since the periodic microdischarge is self-adjusted by a combination of residue space 

charges and the rebound in the local gap voltage, the plasma dynamics and surface charging should 

be sensitive to the applied voltage on the conductive charge roller.  The time evolution of electron 

density and the electric potential of a continuous charging is shown in Fig. 6.13.  The surface 

moves rapidly with a speed commensurate to the formation of the microdischarges, while the 

applied voltage on the charge roller is reduced to -700 V dc voltage.  During the initial stage, the 

microplasma is initiated at small gap and propagates laterally to the large gap.  As the discharge 

spreads on the PC sheet, the conductive plasma fully charges the PC surface, producing a periodic 

potential pattern until it reaches a critical E/N at large gap.  By t = t2, the plasma with a peak 

electron density of only 3.7 × 1011 cm-3 is produced due to the lower applied voltage.  The less 

conductive microdischarge partially charges the underlying dielectric, while the fast-moving 

surface keeps translating away the previous periodic surface potential and bringing the uncharged 

surface inward to the charge roller.  The restore of E/N by moving surface and residue electrons 
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(including secondary electrons by ion and photon flux) self-adjusts the position and characteristics 

of the microplasma.  As the partially charged surface is translated to a small gap, the E/N increases, 

and hence triggers local electron avalanches.  By t = t5, a steady state of microplasma in the 

narrowing gap has been achieved.  Microplasmas are continuously seeded by secondary electrons 

produced by UV photons and ion fluxes.  These microdischarges of low electron density in the gap 

partially charge the underlying PC dielectric, the surface potential remains uniform.                       

 The microplasma and electric potential at steady state is shown in Fig. 6.14(a), the 

corresponding spatial distribution of electric potential, electric field, the densities of electrons, and 

positive and negative ions over the cross section of the discharge are shown in Fig. 6.14(b) and 

6.14(c), and the surface potential on the PC sheet at steady state is shown in Fig. 6.14(d) for a 

rapidly and relatively slowly moving (10 times slower) surface.  After the steady state has been 

achieved, the dielectric is only slightly charged by the microplasma produced by a lower applied 

voltage.  The rate of ionization on the order of 1021 cm-3-s-1 is insufficient to produce a conductive 

plasma; the electron density on the order of 1011 cm-3 peaks at the anodic dielectric while the 

positive ion density of 1013 cm-3 peaks at the cathodic CR.  As a result, the localized space charge 

effect becomes less important; the electric potential gradually drops in the gap, producing a quasi-

constant electric field of 100 kV/cm (E/N ≈ 410 Td) in the gap; and the cathode fall at the CR 

cathode cannot be formed due to low space charge density – the microplasma is sustained in a 

Townsend-like mode.  This homogeneous Townsend-like discharge in a DBD has been observed 

at atmospheric pressure.[22–27]  Having said that, the surface potential at steady state is relatively 

smooth and uniform compared to the periodic charging pattern produced by self-pulsing 

microplasmas at a high applied voltage.  These Townsend-like discharges provide a solution for 

obtaining a uniform charging pattern.  For the voltage investigated, the surface potential is not 
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sensitive to the speed of the moving surface as the discharge is operated in a Townsend-like mode.  

Although the speed of the moving surface is even slower in a real printing application, by 

optimizing the gas mixture, the applied voltage, and the speed of the moving surface, the 

Townsend-like discharge continuously seeded by secondary electrons and photoemission might 

be produced to form a uniform charging pattern.             

 

6.5 Concluding Remarks 

Charge rollers are the most commonly used devices for surface charging of 

photoconductors in EP printing technologies.  I computationally investigated the properties of 

microplasmas in a narrowing gap between a conductive charge roller and a photoconductive 

dielectric.  The charging of the surface of the PC is essentially performed in a dielectric-barrier-

discharge (DBD) manner.  With the dc-biased charge roller and a stationary dielectric target, the 

microplasma is terminated as voltage is removed from the gap by the surface charging on the PC 

dielectric.  The surface potential is sensitive to the conductivity of the charge roller, 

photoionization, photoemission, and the location of field emission current.  As the surface is in 

motion, the moving dielectric brings in uncharged surfaces, which restores the voltage across the 

gap and re-ignites the plasma.  As the process repeats, a periodic self-pulsing microplasma might 

be produced to form an oscillatory charging pattern on the PC surface.  Under certain operating 

conditions, a Townsend-like discharge may be obtained in the narrowing gap, the surface is 

partially charged by the discharge, and a quasi-constant electric field is produced.  As a result, a 

more uniform surface charging on the dielectric may be obtained.  I found that with a higher 

applied voltage and a rapidly moving surface, periodic avalanches form a periodic self-pulsing 

pattern.  With a relatively smaller voltage, a Townsend-like discharge becomes dominant and a 
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uniform surface charging might be obtained. 

In summary, this chapter focuses on atmospheric pressure microdischarges produced by 

conductive charge rollers used in EP printing technologies.  It was found that the remote seed 

electrons provided by photoionization and photoemission are significant in this system due to the 

narrowing gap between charge roller and photoconductor.  Once the remote seed electrons are 

produced at the narrowing gap, an electron avalanche and microplasmas could occur to charge the 

underlying PC surface.  A more uniform surface charging might be obtained by using a smaller 

voltage on the charge roller, and a gas mixture with long lived excited states capable of 

continuously emitting UV/VUV photons which produce photoemission on a fast moving surface. 
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6.6 Figures 

 

Figure 6.1 Schematic of a charge roller (CR) and a photoconductor (PC) drum.  (a) 
Microdischarges and surface charging in the entire device consist of a cylindrical CR and a PC 
drum.  (b) A non-uniform periodic surface charging pattern with period of 1 mm.  An idealized 
device of its original scale is shown in (c); the idealized device with its vertical scale expanded 
by a factor of 2 is shown in (d).  A more sophisticated geometry that is vertically expanded by 
a factor of 4 is shown in (e). 
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Figure 6.2 Time evolution of electron density (color flood, cm-3) and electric potential 
(contour lines, V) produced by a -1.6 kV dc-biased conductive charge roller.  The electron 
density is plotted on a log scale over 4 decades, the maximum density is shown in the upper-
left corner of each time frame.  The discharge is terminated by surface charging. 
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Figure 6.3 Electron impact ionization sources from bulk electrons (Se) at different times 
during the charging process.  The ionization sources are plotted on a log scale over 5 decades. 
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Figure 6.4 The time evolution of an ionization source by sheath-accelerated secondary 
electrons (Ssec) during the charging process.  After the sheath is fully formed, Ssec is in general 
comparable to or an order of magnitude larger than Se.      
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Figure 6.5 The time evolution of photoionization (Sph) plotted on a log scale over 5 decades.  
Although relatively smaller compared to the electron impact ionization source, the remote 
secondary electrons provided by UV photon flux help initiate the microplasmas at the 
narrowing gap. ………………… 
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Figure 6.6 The time evolution of surface voltage (solid, V) on photoconductive dielectric 
for γp = 0.01.  Microplasmas are initiated by emission current from nodes A, B, and C.……. 
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Figure 6.7 The time evolution of surface voltage (solid, V) on photoconductive dielectric 
for γp = 0 (no photoemission from surface).  Microplasmas are initiated by emission current 
from nodes A, B, and C.  The surface potential is less smooth without photoemissions. 
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Figure 6.8 The time evolution of electron density (color flood, cm-3) and electric potential 
(contour lines, V) triggered by a field emission current density of 10-3 A-cm-2 from emission 
node A.  CR is biased with -1.6 kV dc voltage; photoionization and photoemission are not 
considered.  The electron density is plotted on a log scale over 4 decades.   
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Figure 6.9 The time evolution of surface voltage (solid, V) on a photoconductive dielectric 
without photoionization and photoemission.  Microplasmas are initiated underneath the 
emission node A, B, or C if the local field is sufficient.  
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Figure 6.10 Microdischarges produced by a charge roller having a conductivity of σ = 10-4 
Ω-1-cm-1.  (a) The time evolution of electron density (color flood, cm-3), and electric potential 
(contour lines, V) at t = 4, 10, 40, and 180 ns.  (b) Surface voltage (solid, V) after the discharge 
is terminated for σ = 10-2 and 10-4 Ω-1-cm-1. 
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Figure 6.11 The time evolution of electron density (flood, cm-3) and electric potential 
(contour lines, V).  The discharge is re-ignited continuously by a rapidly moving surface.   
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Figure 6.12 Characteristics of microplasmas and surface potential on PC dielectric at steady 
state.  (a) The electron density (flood, cm-3) and electric potential (contour lines, V).  (b) The 
corresponding spatial distribution of electric potential and charge density over the cross section 
of the streamer.  (c) The corresponding spatial distribution of electric potential and electric field 
over the cross section of the streamer.  (d) The surface potential on the PC sheet before and 
after the steady state for a rapidly and slowly moving surface.  
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Figure 6.13 The time evolution of electron density (flood, cm-3) and electric potential 
(contour lines, V) produced by a conductive CR biased with -700 dc voltage.  The discharges 
of low electron density are continuously produced by lower applied voltage and seed secondary 
electrons. ………………… 
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Figure 6.14 The Townsend-like discharge and quasi-constant electric field in the narrowing 
gap.  (a) The microplasma and electric potential at steady state.  (b) The corresponding spatial 
distribution of electric potential and the charge density over the cross section of the discharge.  
(c) The corresponding spatial distribution of electric potential and the electric field over the 
cross section of the discharge. (d) The surface potential at steady state for a rapidly and slowly 
moving (10 times slower) PC surface. …………………  
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 SIMULATION OF MICRODISCHARGE-BASED 

PRESSURE SENSORS……… 

 

7.1 Introduction 

 The microscale pressure sensor is one of the earliest demonstrations of the micromachining 

technologies that have been successfully developed and widely used for biomedical [1-4] and 

industrial [5-8] applications in the past four decades.[9-11]  Among all of the pressure sensor 

principles, the most commonly used schemes are piezoresistive [1,3,5] and capacitive [2,4,6-8] 

methods.  These two approaches form the basis of the vast majority of microscale pressure sensors.   

For a piezoresistive pressure sensor, piezoresistors having a few millimeters in diameter 

are generally mounted at specific locations (usually on the edge) of an edge-supported diaphragm 

or cantilevers where the stress variation is at a maximum.  When the diaphragm deforms as a result 

of the pressure difference between the applied ambient pressure and the pressure in the sealed 

chamber, the stress of the diaphragm changes the electrical resistivity of the embedded 

piezoresistors.  By measuring the resistivity of the piezoresistors (i.e., the stress of the diaphragms), 

the transverse pressure across the diaphragm (or the external pressure applied to the sensor) can 

be detected.  The piezoresistive approach is attractive due to the simplicity of the structure (i.e., 

fabrication process) and the readout circuitry, since the resistive circuits generate a low output-

impedance voltage.  This “piezoresistivity effect” provides an easy and direct energy transduction 

mechanism between the mechanical and electrical signals.   
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Similar to the piezoresistive pressure sensor, this edge-supported flexible diaphragm is also 

an essential feature in a capacitive pressure sensor.  Instead of measuring the stress of a deflected 

diaphragm, the displacement of the diaphragm deformed by external pressure is capacitively 

measured by another parallel electrode located on a substrate below the diaphragm in capacitive 

pressure sensors.  As the external pressure varies, the diaphragm electrode deflects in response to 

the applied pressure and the averaged gap (or capacitance) between two electrodes changes; the 

applied pressure is then detected according to the capacitance variation.  The main advantage of 

the capacitive method is the simplicity of structure, the high sensitivity to the external pressure, 

low temperature dependence, good noise performance, and decreased power dissipation.   

Although piezoresistive and capacitive methods are conceptually simple, commercially 

available, and have been well studied by the MEMS research community, a pressure-sensing 

solution for extreme, hostile environments using both conventional approaches is still limited by 

its intrinsic nature.[7,11-12]  For example, in a borehole environment for oil/gas extraction, the 

temperature can be several hundred degrees (ºC), and the maximum pressure can be several to 

several hundred megapascals.  The size of the device volume also has very tight constraints.[12]  

In such hostile environments, both methods do have challenges (e.g., strong temperature 

dependence, highly attenuated output signal, and intensified noise due to the reduced size), which 

motivates a new pressure-sensing solution.     

Recently, a new pressure-sensing solution based on microdischarge has been proposed by 

Yogesh et al.[12-15]  The microdischarge-based pressure sensors generally have three electrodes 

with two competing cathodes and one anode.  One of the cathodes is attached to a flexible 

diaphragm.  Microplasmas are then produced between biased electrodes in a sealed chamber filled 

with atmospheric pressure inner gas to avoid the production of negative ions and to prevent the 
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input power from being wasted in exciting the lower energy states.  Argon is usually used in the 

chamber due to its low operating voltage and cost.  When the sensor is subjected to an external 

pressure, the external pressure deflects the diaphragm and the attached cathode.  As a result, the 

current produced by the microplasma between biased electrodes is redistributed due to the 

changing of inter-electrode spacing and internal pressure.  A differential current defined by the 

current collection on the competing cathodes is indicative of the diaphragm deflection determined 

by the external pressure. 

Microdischarge-based pressure sensors are attractive due to their potential advantage of 

operating in harsh environments with high temperature and tight constraints for the device volume.  

Since the electron temperature in microplasma has an average thermal energy of a few eV (1 eV 

≈ 11,600 K), the current collection and plasma behavior are not sensitive to the ambient 

temperature.[16-17]  In addition, the current produced by microplasma is larger compared to 

devices using conventional piezoresistive and capacitive methods.  The large inherent current 

reduces the complexity of the interface circuits, and eliminates the need for current amplification.  

As a result, the microdischarge-based device can be much smaller in area than the smallest 

capacitive and piezoresistive pressure sensors that have been reported.[12]       

In this chapter, I present the results of a numerical investigation of current collection and 

plasma properties in a microdischarge-based pressure sensor sustained in atmospheric-pressure 

argon.  The model geometry of the pressure sensor, shown in Fig. 7.1, is patterned after those 

proposed for pressure sensing.  I found that after electron avalanches at the corners of an anode 

where the electric field is geometrically enhanced, a highly conductive plasma is generated 

between an anode (A) and a sensing cathode (K2).  The plasma also brings anode voltage to the 

reference cathode (K1) and triggers a repetitive ionization wave (IW) propagating along A-K1.  The 
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plasma sustained on both cathodes and the periodic IWs provide a pulse-modulated dc current 

collected on the cathodes.  The current distribution on K1 and K2 varies with inter-electrode spacing 

(A-K2) and can be optimized by adjusting the impedance connected to the electrodes. 

The model used in this chapter is described in Sec. 7.2 and followed by a discussion of Ar 

plasma dynamics sustained in a discharge-based pressure sensor in Sec. 7.3.  In Sec. 7.4, repetitive 

ionization waves and the current collection on cathodes are discussed.  Differential current and the 

corresponding deflection of the diaphragm are discussed in Sec. 7.5.  Sec. 7.6 contains our 

concluding remarks. 

 

7.2 Description of the Model and Reaction Mechanism 

A first principles computer model, nonPDPSIM, was performed in this chapter to improve 

the fundamental understanding and insight into the physical process in this device, and to provide 

design rules.  nonPDPSIM is described in Chapter 2 and in Refs.[18-19] 

The model geometry of the microdischarge-based pressure sensor device is shown in Fig. 

7.1.  The whole computational domain is shown in Fig. 7.1(a); the undeflected microdischarge 

chamber with a 10-μm gap is shown in Fig. 7.1(b) with its vertical scale expanded by a factor of 2 

for clarity.  A chamber with a 7-μm gap is shown in Fig. 7.1(c) as a deflection example.  The 

circuit legs of three electrodes (A, K1, and K2) are embedded in a glass with a dielectric constant 

of ε/ε0 = 3.9.  The anode (A) is adjacent to a reference cathode (K1), and a sensing cathode (K2) is 

attached to a diaphragm and separated from the anode by a microdischarge chamber.  The exposed 

electrodes of the reference cathode (K1) and anode (A) are 35 μm wide and 1 μm in thickness in 

the microdischarge chamber.  The sensing electrode (K2) with an exposed area that is 35 μm wide 

is directly under the anode and is separated by a 10-μm gap.  The cathodes are grounded, and the 
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anode is biased with a 400 V dc potential.  Ballast resistors of a few hundred ohms are connected 

to the electrodes to control the plasma behavior and current shape.  A dc voltage pulse applied to 

the electrodes initiates a microdischarge between A-K1 and A-K2.  When the sensor is subjected 

to an external pressure, the diaphragm deforms according to the pressure and changes the A-K2 

spacing, while the A-K1 spacing remains unaffected.  The changing of inter-electrode spacing then 

redistributes the spatial current IK1 and IK2 collected on K1 and K2, respectively.  To reduce the 

pulse-to-pulse variation caused by plasma dynamics and material properties, a differential current 

(IK2-IK1)/(IK2+IK1) is used as an index of external pressure.                    

In this chapter, the discharge is initiated with an emission current of 10-2 A-cm-2 for 10 ns 

from the corners of 2 cathodes.  The microdischarge chamber is filled with atmospheric pressure 

Ar at 300 K.  A reduced reaction mechanism contains a subset of the Ar plasma chemistry 

described in A. N. Bhoj et al. [20] to reduce the magnitude of the computation.  The species in the 

model are Ar, Ar*, Ar**, Ar+, Ar2
*, Ar2

+, and electrons.  Ar is the ground state (3s23p6).  The lowest 

excited state Ar* is the Ar(3p54s), which is a mix state of metastable states [Ar(1s5), Ar(1s3)] and 

radiative states [Ar(1s4), Ar(1s2)].  Higher excited states (Ar(3p54p) or higher) are lumped into 

Ar** states.  Ar2
* and Ar2

+ are the dimer excited state and dimer ion produced through three-body 

collision that is significant at atmospheric pressure.  There are 7,723 computation nodes in the 

mesh, of which 4,025 nodes are in the plasma zone.  The finest resolution of the mesh in the plasma 

zone is from 0.6 to 0.8 μm.  Although the underlying unstructured mesh used in this investigation 

is static—it does not evolve during the computation—the deflection of the diaphragm and its 

corresponding differential current as a function of external pressure can be modeled by a series of 

calculations with different deformations of the diaphragm.  Although the original device is a 3D 

design [12], our model, being 2D, resolves structure in a Cartesian geometry.   
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7.3 Plasma Dynamics in the Microdischarge Pressure Sensor 

 The characteristics of microdischarge in the chamber with a 10-μm gap (see Fig. 7.1(a)–

(b)) will first be discussed.  The reference (K1) and sensing cathode (K2) are grounded, and the 

anode (A) is biased with a 400 V dc voltage.  A 500-Ω and two 100-Ω ballast resistors are 

connected to the anode and two competing cathodes (K1 and K2) to limit the current and so prevent 

arcing.  The time evolution of electron density and electric potential is shown in Fig. 7.2.  The time 

evolution of E/N (electric field/gas number density) is shown in Fig. 7.3, and electron impact 

ionization sources by bulk electrons, Se, and secondary electrons, Ssec, are shown in Fig. 7.4 and 

Fig. 7.5, respectively.   

 The discharge is initiated with an electron current emission of 10-2 A-cm-2 for 10 ns from 

the corners of cathodes.  Due to the high averaged electric field of 400 kV/cm (E/N ≈ 1,630 Td, 1 

Td = 10-17 V-cm-2) in the gap between anode (A) and sensing electrode (K2), the electron avalanche 

occurs by t = 1 ns, and peaks at the corner of the anode where the electric field is geometrically 

enhanced.  Ionization on the order of 1020 to 1021 cm-3 s-1 is provided by low-energy bulk electrons, 

Se, and high-energy beam-like secondary electrons, Ssec, emitted from the cathodes produced by 

ion bombardment.  Photoemission and photoionization are insignificant in the Ar plasma system.  

At this time, the peak electron density on the order of 4 × 109 cm-3 does not significantly perturb 

the applied potential and electric field inside the chamber.  After the avalanche, the bulk plasma 

becomes conductive and then shields the electric field and reduces E/N.  The peak electron density 

at mid-gap is up to 1016 cm-3 at t = 7 ns, and the corresponding local E/N drops to 500 Td.  The 

conductive plasma transfers the anode potential to the sensing cathode (K2) and fully forms the 

sheath.  This high potential-drop at K2 then produces intense electron impact ionization as high as 
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2 ×1024 cm-3 s-1 by sheath-accelerated secondary electrons, Ssec, and peaks at sensing cathode K2.  

At this time, the electron ionization source by bulk plasma, Se, is comparable with Ssec.  Since the 

reference cathode (K1) is adjacent to the anode and separated by a 10-μm gap, the highly 

conductive plasma also transfers anode voltage to K1 and forms a high voltage-drop between A-

K1.  The E/N between A-K1 peaks at the corner of K1 due to the geometrical enhancement.  As the 

discharge proceeds, the positive ion flux laterally transports toward K1 and produces secondary 

electrons from the edge of K1.  By t = 17 ns, the ionization source between A-K1 by secondary 

electrons emitted from K1 (Ssec) accelerated by the sheath potential at the edge of K1 starts to trigger 

a bullet-like ionization wave (IW) propagating laterally to its left and thus stretching the local 

plasma between A-K2 to reference cathode K1.  The IW sustained by both Se and Ssec is mainly 

seeded by field emission and secondary electrons emitted from K1 since the photoionization and 

photoemission are insignificant in Ar plasma.  Within 20 to 30 nanoseconds, the plasma channel 

produced by the first IW covers K1 and then stops propagating at the left edge due to the absence 

of emitting seed electrons ahead of the plasma channel.   

 As the bullet-like IW propagates along K1, the plasma channel becomes less conductive.  

The local E/N and electron temperature, Te, then increase to trigger the next IW bullet.  A time 

evolution of the line profile of the ionization source by bulk plasma, Se, along the mid-gap is shown 

in Fig. 7.4 (b).  As the first IW bullet propagates to the left edge of K1 at t = 34 ns, the electron 

density in the plasma channel between A-K1 drops to 3 × 1014 cm-3.  The local peak E/N rebounds 

to 100 Td and starts to initiate a second bulk ionization source of 4 × 1023 cm-3 s-1.  The second Se 

bullet increases in amplitude during the propagation along K1 and then eventually two IW bullets 

merge within 10 to 20 nanoseconds.  This process repeats and produces periodic bullet-like 

ionization waves propagating along reference cathode K1.   
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7.4 Periodic IW and Current Collection  

 As the periodic IW bullets laterally propagate to reference cathode K1, positive charges 

generated by IW transport to K1, which then increases positive current collection, IK1, and voltage 

on K1 through the ballast resistor.  Microplasma sustained between A-K2 also produces a positive 

current, IK2, collected by sensing cathode K2.  Although the bullet-like peak electron density 

(shown in Fig. 7.2) follows the IW front to reference cathode K1, the electron flux actually flows 

to the opposite direction and is collected by the anode (A).  The electron current, IA, collected by 

the anode reduces the voltage drop between A-K2 through the ballast resistor, and then decreases 

the ion current collection on sensing electrode K2.  For example, the periodic steady-state current 

collection on both cathodes, as well as a time evolution of electron density, is shown in Fig. 7.6 to 

demonstrate the plasma dynamics and the corresponding IV trace.  At t = t1, two IW bullets at K1 

produce a peak positive ion current in IK1.  A high electron flux transports to the anode reducing 

the voltage drop between A-K2 and the current collection, IK2.  As the two bullets merge by t = t3, 

fewer positive charges (electrons) are collected on K1 (A), the voltage drop between A-K2 

rebounds, and then IK1 (IK2) decreases (increases).  At this time, the electron density drops between 

A-K1, and the rebound local E/N then triggers the third IW bullet.  At t = t4 the third bullet starts 

to propagate to K1, which increases IK1 and reduces Ik2.  Before the third bullet merges at K1, the 

fourth bullet is generated between A-K1 and starts to propagate by t = t6.  The fourth bullet further 

increases the IK1 and decreases Ik2.  This ionization process repeats to generate periodic IW bullets 

and a pulse-modulated positive dc current on K1 and K2.  During the ionization process and IW 

propagation, the dc current on the cathode is sustained by the continuous ionization source at the 

cathode, and the pulsed current is produced by the repetitive bullet-like ionization waves.  The 
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shape of the current pulse (i.e., pulse period and its amplitude) strongly depends on the location 

and frequency of newly generated IW bullets in the chamber.  For this particular case, the period 

of the pulsed-modulated current is 25 to 30 ns, in which two IW bullets are generated during each 

pulse.  Notice that the ion current, IK1, is nearly 180o out of phase with IK2 over the period with a 

phase delay due to the electron/ion transition time.  

 The plasma dynamics and current collection can be controlled to optimize the signal output 

by adjusting the ballast resistors.  A time series of current on the cathodes connected to three 

resistor sets (ΩSmall, ΩMedian, and ΩLarge) is shown in Fig. 7.7.  After t = 50 ns, the currents are 

already in an oscillatory steady state.  With a relatively small resistor set (250 Ω and 50 Ω on anode 

the cathodes, respectively) connected to the electrodes, pulsed-modulated dc ion currents of 0.4 

Amps and 0.7 Amps are collected on the reference and sensing cathodes—K1 and K2, respectively.  

IK1 is highly modulated by repetitive ionization waves while IK2 seems to be less fluctuated because 

the smaller resistor on the anode cannot significantly change the voltage drop between A-K2.  By 

doubling the resistance to a median resistor set (500 Ω and 100 Ω on anode the cathodes, 

respectively), the currents are reduced by half—only 0.2-Amp and 0.4-Amp ion currents are 

collected by K1 and K2, respectively.  Both IK1 and IK2 are highly modulated by the bullet-like 

ionization waves, and the currents are nearly 180º out of phase with a small phase delay.  Over the 

range of resistance investigated from small to median resistor sets, the plasma dynamics does not 

dramatically change: after electron avalanches a conductive plasma transfers the anode voltage to 

the cathodes, and the periodic bullet-like IWs are then generated and produce pulsed-modulated 

dc currents on the cathodes.  However, as the resistance of the ballast resistor is increased to a 

large resistor set, the plasma density between A-K2 drops and the plasma becomes less conductive.  

The electron density at steady state in the chamber connected with the large resistor set is shown 
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in Fig. 7.7(b).  This less conductive (or more resistive) plasma cannot fully transfer the anode 

voltage to the reference cathode and so cannot create an intense ionization source between A-K1.  

As a result, the microdischarge sustained by the anode and sensing cathode K2 does not extend to 

cover K1, and the bullet-like IWs are not triggered to provide the pulsed currents.  A pure dc ion 

current is then collected by sensing cathode K2, and the ion current on K1 is almost zero.                                 

 

7.5 Differential Current and External Pressure  

 When the microdischarge-based pressure sensor is subjected to an environment with 

external pressure, the diaphragm attached to sensing cathode K2 deforms due to the difference 

between the internal chamber pressure and the external applied pressure.  The deflection of the 

diaphragm increases (or A-K2 spacing decreases) with external pressure, while A-K1 spacing 

remains unaffected.  As a result, the changing of inter-electrode spacing redistributes the current 

IK1 and IK2 collected on reference electrode K1 and sensing electrode K2.  Having said that, the 

output signals of IK1 and IK2 are not directly used to measure the changing of inter-electrode 

spacing due to the pulse-to-pulse variation caused by noise, plasma dynamics, and material 

properties; a differential current (IK2 - IK1)/(IK2 + IK1) is used as an index of external pressure.                       

 Given that the underlying unstructured mesh used in the model does not evolve during the 

calculation, the deformation of the diaphragm as a function of external pressure and its 

corresponding current collection are modeled by a series of computations with different deflections 

of the diaphragm in this investigation.  The internal chamber pressure also increases with 

deflection of the diaphragm in the model, assuming that P × V is a constant where P and V are 

internal pressure and volume in the discharge chamber, respectively.  The time series of current 

collection on cathodes (IK1 and IK2) and its differential current (IK2 - IK1)/(IK2 + IK1) for deflection 
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up to 3 μm is shown in Fig. 7.8.  As the diaphragm is deformed by the external pressure, the 

changing of the inter-electrode spacing and internal pressure perturb the E/N between electrodes.  

The location and frequency of the generation of new IW bullets strongly depend on the local 

variation of E/N.  As a result, the deflected diaphragm redistributes the temporal and spatial 

variations of current collection on each cathode, the pulse period seems to decrease with increasing, 

and the time series of IK1 is always nearly 180º out of phase with IK2.  Over the range of deflections 

investigated, the plasma dynamics does not dramatically change.  The averaged differential current 

as a function of deflection and external pressure is shown in Fig. 7.8.  The deflection of the 

diaphragm corresponding to external pressure (0.12 μm/MPa or 0.012 μm/atm) is obtained using 

Electrostatic Finite Element Analysis (FEA) performed with COMSOL assuming that a 5 μm thick 

diaphragm is attached to sensing cathode K2.[12]  In general, the averaged differential current 

decreases with increasing deflection and then rebounds after a deflection of 1.5 μm (123.3 atm. 

applied pressure).  It is highly expected that the differential current is not a linear function of 

deflection since the system is too complicated (as it involves multi-time scale electron/ion behavior 

and the changing of inter-electrode spacing and internal chamber pressure).  The phase difference 

between IK1 and IK2 also shifts due to the changing of the electron transition time results from the 

deflection of diaphragm.  The “phase shift” significantly changes the pulse shape of differential 

current and adds another nonlinearity to the signal output as the diaphragm deforms.  Having said 

that, the device of interest is demonstrated to be feasible in measuring the external pressure, and 

an operating regime of 123.3 atm. is computationally obtained in this investigation.                         
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7.6 Concluding Remarks 

A microdischarge-based pressure sensor has been proposed for harsh environments with 

high ambient temperature and tight constraints for device volume.  I computationally investigated 

the behavior of microplasma in the discharge chamber and current collection on the competing 

cathodes.  I found that, following the electron avalanche in the geometrically enhanced electric 

field at the edge of the anode, a conductive plasma is generated within tens of nanoseconds.  The 

microplasma transfers the anode voltage to sensing cathode K2, creating a high-voltage sheath and 

an intense electron impact ionization source that provides an ion current IK2.  Meanwhile, the 

conductive plasma creates a high voltage-drop between A-K1.  The secondary electrons and field 

emission from reference cathode K1 accelerated by the large potential at A-K1 help trigger a bullet-

like ionization wave propagating to K1.  As the plasma channel along A-K1 becomes less 

conductive, the local voltage and E/N rebounds and creates a new ionization bullet propagating to 

its left.  The process repeats to generate periodic bullet-like ionization waves (IWs) and a pulse-

modulated dc current on cathodes.  The current shape can be optimized by adjusting the ballast 

resistor connected to the electrodes.  As the resistance exceeds a critical value, the IW cannot be 

triggered and hence only a dc current can be collected on K2.  I also found that the current collection 

varies with inter-electrode spacing (A-K2) that is changed by the deflection of the diaphragm due 

to the external pressure; generally the differential current decreases with increasing deflection and 

then rebounds at a 1.5-μm deflection.  Since IK1 and IK2 are nearly 180º out of phase, which adds 

another complexity to the differential current, a smaller resistor on the anode might be preferable.        

In summary, this chapter aims at understanding the plasma dynamics, transport of charge 

species and current collection in the microdischarge-based pressure sensors.  It was demonstrated 

by the simulation results that the differential current used as an index of external pressure varies 
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with deflection of the diaphragm.  Although it does not monotonically changes with deflection due 

to the nonlinearity and phase difference between currents on both cathodes, it provides design rules 

for new device.  For example, two-competing-anodes should be used in the new device instead of 

two-competing-cathodes to avoid the phase difference between current collections.       
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7.7 Figures

 

Figure 7.1 Schematic of the microdischarge-based pressure sensor device.  (a) The whole 
computational domain. (b) The deflected microdischarge chamber with a 10-μm gap. (c) A 
deflection example of a discharge chamber with a 7-μm gap (i.e., 3-μm deflection).  The 
vertical scale for Fig. 7.1(b) and 7.1(c) is expanded by a factor of 2 for clarity.    
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Figure 7.2 Time evolution of electron density (color flood, cm-3) and electric potential 
(contour lines, V) produced by a 400 V dc-biased anode in the microdischarge-based pressure 
sensor.  The electron density is plotted on a log-scale over 4 decades.  The density shown on 
the left in the figures is the maximum level of electron density.   
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Figure 7.3 Time evolution of E/N (color flood, Td) and electric potential (contour lines, V) 
produced by a 400 V dc-biased anode in the microdischarge-based pressure sensor.  The E/N 
(Td) is plotted on a linear scale from 20 to 2,500 Td.      
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Figure 7.4 Electron impact ionization from bulk electrons (Se).  (a) The time evolution of 
electron impact ionization Se (color flood, cm-3 s-1) and electric potential (contour lines, V).  
The ionization source is plotted on a log-scale over 5 decades.  (b) A line plot of ionization 
source Se at mid-gap in the chamber at t = 34 ns, 36 ns, and 43 ns.  Bullet-like ionization waves 
propagate to the left. ………………… 
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Figure 7.5 The time evolution of ionization by secondary electrons Ssec (color flood, cm-3 
s-1) and electric potential (contour lines, V).  The ionization source is plotted on a log-scale 
over 5 decades.  The secondary electrons emitted from K1 help trigger the ionization waves 
between A-K1. …………………  
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Figure 7.6 The periodic steady-state current collection and its corresponding electron 
density.  (a) IK1, IK2, and their differential current as a function of time.  (b) A time evolution of 
electron density (color flood, cm-3) and electric potential (contour lines, V).  The electron 
density is plotted on a log-scale over 4 decades.  
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Figure 7.7 The current collection and plasma dynamics can be shaped to optimize the 
signal output by adjusting the ballast resistor.  (a) A time series of current collected on the 
cathodes connected to three resistor sets (ΩSmall: 250 Ω on the anode and 50 Ω on cathodes; 
ΩMedian: 500 Ω on the anode and 100 Ω on cathodes; ΩLarge: 1,000 Ω on the anode and 200 Ω 
on cathodes).  (b) Electron density at steady state sustained by electrodes connected to ΩLarge.  
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Figure 7.8 The time series of current collection on cathodes (IK1 and IK2) and its differential 
current (IK2 - IK1)/(IK2 + IK1) for deflection up to 3 μm.  The external applied pressure (atm.) 
corresponding to the deflection is shown on the top x-axis.  
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 SUMMARY AND FUTURE WORK 

 

Atmospheric pressure microdischarge-based technologies have been widely developed for 

industrial applications.  This thesis focused on the plasma dynamics and plasma-surface interaction 

in devices of interest such as print head in iconography, corona discharges and charge rollers in 

electrophotography, and microdischarge-based pressure sensors.  By using a 2-D multi-fluid 

simulation platform, nonPDPSIM, I can improve the fundamental understanding of nonlinear 

plasma behaviors and provide design rules to optimize the performance of devices.   Summary and 

future works of each chapter are discussed in Sec. 8.1.  This is followed by the list of publications 

in Sec. 8.2. 

 

8.1 Summary and Future Work 

8.1.1 Electron current extraction from mDBD arrays  

Chapter 3 discussed the investigation of property of micro-DBDs (mDBDs) used as current 

sources for charging of surfaces.  The mDBD with an additional charge extraction electrode is 

sustained in atmospheric pressure N2 with a small O2 impurity and driven with radio frequency (rf) 

waveforms of up to 25 MHz.  Following the avalanche in the mDBD cavity, the plasmas can be 

produced and extracted into a plume that is collected by the dc-biased extraction electrode.  It was 

found that the charge collection can be controlled by a choice of driving voltages, frequency, 

dielectric constant, and extraction voltage.  If operated with a low rf frequency (a few MHz), the 

current is highly modulated due to successive charging and discharging of the intervening 
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dielectric.  The extraction of current depletes the plasma in the mDBD cavity to the extent that the 

plasma needs to be reignited each rf cycle.  The reignition is in part facilitated by photoemission 

from the inside surface of the cavity.  Chapter 4 summarized the plasma dynamics of a small array 

of independently controlled mDBDs sustained in 1 atm N2/O2 mixtures and the interaction between 

the current extracted from the mDBD array and the dielectric target.  After the electrons are 

extracted onto the dielectric surface, the negatively charged surface starts to deflect the incoming 

electron plumes.  This dielectric effect can be mitigated by increasing the dielectric constant of the 

target surface.  The adjacency of the mDBDs apertures and the positive ions accumulated in the 

gap also help shape the plume and extract charges by increasing the average extractions field.  It 

was found that the oxygen fraction is an important factor.  With increasing oxygen content, 

electron attachment process begins to dominate and electrons current extraction is reduced by 

negative ion charges accumulated in the gap.  The surface potential profiles can be independently 

controlled by a choice of spacing between mDBD and applied voltage waveform on mDBD array.   

The work of current extraction from independently controlled mDBD array discussed in 

Chapter 3 and Chapter 4 arose from the need to produce a large current with high resolution. High 

current extraction is desirable in a print head for high-speed printing and the high resolution is 

required, but limited by extracted current beam size and blooming (dielectric effect) on the 

dielectric surface.  However, the devices modeled in these studies are simplified, and the target 

surface is stationary.  To more accurately simulate the system, future works and recommendations 

are listed as follows: 

• In real printing applications, the target surface is moving.  Therefore, the main focus of 

future work should be on plasma dynamics and its interaction with a moving surface. 
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• In a real printer, the air flows with moving surface.  The airflow should also be taken into 

consideration using time-slicing techniques.   

• It was proposed that increasing the extraction voltage and gas pressure, while keeping the 

ratio of E/N constant, can reduce the size of electron beam.  This approach should also be 

addressed in future research.    

• In the simulation, the voltages applied to both screen electrode and discharge electrode 

remains constant.  In reality, the potential on both electrodes varies with the electron 

current extraction due to the voltage drop across the ballast resistors connected to the 

electrodes.  It should also be taken into account.    

• It was found in the experiments that the bottom dielectric was burned and melted, and this 

damage of the material can be attributed to the gas heating or ion bombardment.  However, 

the temperature of gas, ion and material are held constant during the simulation, and the 

heat transfer is not calculated.  In the future work, these issues should be addressed.  

 

8.1.2 Corona discharge and conductive charge roller   

Chapter 5 discussed an investigation of idealized corona discharge sustained in 

atmospheric pressure air used in electrophotographic (EP) printing technologies to charge the 

underlying dielectric photoconductors (PC) surface.  After an electric discharge is produced around 

the corona wire, electrons drift toward and negatively charge the dielectric surface.  The surface 

charging traps the electric potential lines into the dielectric and reduces the voltage drop across the 

gap between the corona wire and the dielectric surface.  On a stationary dielectric, the discharge is 

terminated when surface charging reduces the electric field.  In real printing applications, this 

underlying surface is in motion.  The moving dielectric translates away the surface charging from 
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the corona wire. The incoming uncharged surface then restores the electric field in the vicinity of 

the corona wire, which in turn reignites the discharge.  This charging process repeats to form an 

oscillatory charging pattern on the moving surface.  Chapter 6 discussed the properties of 

atmospheric pressure microplasmas in a narrowing gap between a dc-biased charge roller (CR) 

and photoconductor (PC).  After the microdischarges are produced in the gap, electrons drift 

downward and negatively charge the underlying PC surface, which then remove the voltage drop 

across the gap if operated with a dc or quasi-dc voltage on the CR.  In real printing applications, 

both the CR and PC are rotating.  The rotating PC surface brings in an uncharged surface, which 

produces a rebound in the voltage drop and reignites the plasma.  With a higher applied voltage 

and a rapidly moving surface, an oscillatory charging pattern is formed by self-pulsing 

microdischarges.   

Charging of a moving surface by corona discharges and charge rollers were discussed in 

Chapters 5 and 6.  To improve the performance, future works and recommendations are listed as 

follows: 

• The speed of a moving surface used in the model is as high as a few km/s.  However, in a 

real printer, the underlying dielectric surface moves at a speed of hundreds of cm/s – the 

residence time of the moving surface may be a few hundred microseconds.  Therefore, the 

simulation results might not be able to accurately reflect the real plasma dynamics and 

surface charging mechanism.  However, it is difficult to address the surface moving at its 

actual speed, while also simulating plasma processes with many picosecond time steps in 

the current model.  To address this issue, focus of future work should be on the 

development of new numerical schemes, better approximation method or parallelization of 

the code to accelerate the simulation.   
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• In real printing applications, the corona wire and the conductive charge roller are biased 

with a few kV dc plus ac voltages to optimize the performance, and the charge roller 

consists of layers of different dielectric properties.  In the future work, an extensive 

parametric study should be carried out.      

• Airflow and heat transfer should also be taken into consideration. 

• When the PC surface is in motion, the surface charging is translated toward the CR.  As 

the charging surface is in contact with the conductive CR, the interaction between the 

surface charges and CR is still unknown.  This issue should be discussed in the future.  

 

8.1.3 Microdischarge-based pressure sensor 

Chapter 7 discussed the investigation of the behavior of plasmas in the microdischarge-

based pressure sensor and current collection. Following the electron avalanche in the geometrically 

enhanced electric field at the edge of the anode in this sensor, a conductive microdischarge is 

initiated between an anode (A) and two competing cathodes (a reference cathode, K1, is adjacent 

to the anode, and a sensing cathode, K2, is attached on the flexible diaphragm) within tens of 

nanoseconds.  As the external pressure deflects the diaphragm and changes the inter-electrode 

spacing, the current collected by the two competing cathodes are redistributed.  It was found that 

a periodic bullet-like ionization wave (IW) is generated in the chamber, which produces a pulse-

modulated dc current collected on K1 and K2.  The current shape can also be optimized by adjusting 

the impedance connected to electrodes.   

The model geometry used in this chapter is idealized, recommendation for future works 

are listed as follows: 
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• In the experiments, parasitic capacitors provide an additional voltage source which is not 

included in the model.  The largest gap size (the gap before the diaphragm was deformed) 

used for simulation is 10 µm, while a 30 µm gap is used in the experiments.  As a result, 

the current collection as a function of time in the simulation is not quantitatively consistent 

with experiment data.  In the future, the parasitic capacitors should be taken into account.  

• The gas heating and airflow in the device are not considered in the current model.  In the 

future work, heat transfer, airflow, and temperature effect should be discussed. 

• The differential current is not monotonically proportional to the deflection of the 

diaphragm due to the nonlinear characteristics and the phase difference between currents 

collected on two cathodes.  In the new design of microdischarge pressure sensor, a two-

anode device might be a better choice. 

 

8.2 Publications 

Research presented in this thesis has resulted in the following peer-reviewed journal 

articles, patents, conference proceedings, and presentations. 

 

Referred Journal Articles 
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[2] J.-C. Wang, S. Chang, N. Leoni, H. Birecki, M. Lee, T. Anthony, O. Gila and M. J. Kushner, 

“Atmospheric pressure microdischarges produced by conductive charge rollers”, in 

preparation.    

[3] J.-C. Wang, D. Zhang, N. Leoni, H. Birecki, O. Gila and M. J. Kushner, “Charging of moving 
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surfaces by corona discharges sustained in air”, submitted to J. Appl. Phys.   
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