Curriculum Vitae

Education

08/2014 - present	University of Michigan, Ann Arbor	Advisor:	Prof.	Mark J. Kushner
	Ph.D., Electrical Engineering			
09/2011 - 03/2014	Shanghai Jiao Tong University, China	Advisor:	Prof.	Jon T. Gudmundsson
	M.S., Electronics Science & Technology		GI	PA: 3.7/4.0
08/2007 - 06/2011	Southeast University, China			
	B.S., Electrical Engineering & Its Autor	nation	GI	PA: 89/100

Publications

- [1] Shuo Huang and J T Gudmundsson. A particle-in-cell/Monte Carlo simulation of a capacitively coupled chlorine discharge. *Plasma Sources Science and Technology*, 22(5):055020, 2013.
- [2] Shuo Huang and J T Gudmundsson. A current driven capacitively coupled chlorine discharge. *Plasma Sources Science and Technology*, 23(2):025015, 2014.
- [3] Shuo Huang and J T Gudmundsson. Ion energy and angular distributions in a dual-frequency capacitively coupled chlorine discharge. *IEEE Transactions on Plasma Science*, 42(10):2854–2855, 2014.
- [4] Shuo Huang and J T Gudmundsson. Dual frequency capacitively coupled chlorine discharge. *Plasma Sources Science and Technology*, accepted, 2014.

Theses

M.S. Thesis Particle-in-cell/Monte Carlo simulation of single- and dual-frequency capacitively coupled chlorine discharges

B.S. Thesis Particle swarm optimization applied in state estimation for IEEE 36-bus network

Research experiences

08/2014 - present	Investigation on NF ₃ discharge
	• Collect the data for the chemistry of NF ₃ discharge
	• Explore NF_3 discharges driven by pulsed power and continuous wave power
08/2013 - 07/2014	Investigation on dual-frequency capacitively coupled chlorine discharge
	• Explored the effect of adding a low-frequency source on the discharge
	• Explored the coupling between two sources and its influence on the
	independent control of ion energy and flux
09/2012 - 07/2013	Investigation on single-frequency capacitively coupled chlorine discharge
	• Explored the effect of driving source, secondary electrons and chamber
	geometry on the discharge
	• Explored key plasma parameters and properties including electron
	heating mechanism, ion energy distributions and surface interactions, etc.
09/2011 - 08/2012	Code (oopd1) development for simulation of chlorine discharge
	• Included 5 species and 44 reactions
	• Developed the package for chlorine discharge on C++ platform

Honors and awards

2009 National Scholarship (1%)

2011 Outstanding graduate student of Southeast University (3%)